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Abstract 

Background: Diagnostic testing has been pivotal in detecting SARS-CoV-2 infections and reducing transmission 
through the isolation of positive cases. We quantified the value of implementing frequent, rapid antigen (RA) testing 
in the workplace to identify screening programs that are cost-effective.

Methods: To project the number of cases, hospitalizations, and deaths under alternative screening programs, we 
adapted an agent-based model of COVID-19 transmission and parameterized it with the demographics of Ontario, 
Canada, incorporating vaccination and waning of immunity. Taking into account healthcare costs and productiv-
ity losses associated with each program, we calculated the incremental cost-effectiveness ratio (ICER) with quality-
adjusted life year (QALY) as the measure of effect. Considering RT-PCR testing of only severe cases as the baseline sce-
nario, we estimated the incremental net monetary benefits (iNMB) of the screening programs with varying durations 
and initiation times, as well as different booster coverages of working adults.

Results: Assuming a willingness-to-pay threshold of CDN$30,000 per QALY loss averted, twice weekly workplace 
screening was cost-effective only if the program started early during a surge. In most scenarios, the iNMB of RA 
screening without a confirmatory RT-PCR or RA test was comparable or higher than the iNMB for programs with a 
confirmatory test for RA-positive cases. When the program started early with a duration of at least 16 weeks and no 
confirmatory testing, the iNMB exceeded CDN$1.1 million per 100,000 population. Increasing booster coverage of 
working adults improved the iNMB of RA screening.

Conclusions: Our findings indicate that frequent RA testing starting very early in a surge, without a confirmatory test, 
is a preferred screening program for the detection of asymptomatic infections in workplaces.
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Background
Diagnostic testing has been instrumental to mitigat-
ing the COVID-19 pandemic, particularly for inform-
ing quarantine strategies, and evaluating spatiotemporal 
infection risk [1–5]. Prior to the widespread availabil-
ity of rapid antigen (RA) tests, identifying SARS-CoV-2 
infection relied predominantly on reverse transcription 

polymerase chain reaction (RT-PCR). The availability 
of RA tests has provided a viable alternative to RT-PCR 
methods by scaling up testing capacities and shorten-
ing test turnaround times from days to minutes [2, 6]. 
Despite their lower sensitivity compared to RT-PCR 
tests, low-cost self-administered RA tests are increas-
ingly used outside clinical settings, especially for screen-
ing at home and workplaces [7, 8].

The effectiveness of RA tests in real-world settings has 
been demonstrated in several studies [8–14]. Relative 
to the detection of cases through RT-PCR screening for 
asymptomatic cases, RA tests have been able to identify 
20–81% of these cases [2, 8, 12–17]. However, the fast 
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turnaround time of RA tests can allow for increased fre-
quency of testing compared to RT-PCR, thus improving 
case detection in the early stages of disease for screening 
programs and limiting the extent of onward transmission 
[17, 18].

A recent study provides a roadmap for the scalable 
implementation of frequent RA testing to detect asymp-
tomatic infection in workplaces, suggesting that screen-
ing programs could interrupt chains of transmission, 
thereby reducing the burden of disease [10]. Although 
low rates of false positives in large-scale screening 
programs with frequent RA testing may not disrupt 
workplace operations [10], the scale of false-negative out-
comes remains a concern, especially for the identification 
of breakthrough infections [8]. Commissioned by Health 
Canada, we evaluated the costs and benefits of frequent 
RA testing in workplaces post-Omicron BA.1 wave by 
performing cost-effectiveness analyses of screening pro-
grams with and without confirmatory RT-PCR testing.

Methods
General framework
To evaluate the cost-effectiveness of RA screening in 
workplaces, we used both direct and indirect costs asso-
ciated with SARS-CoV-2 infection and outcomes derived 
from an agent-based model of COVID-19 transmis-
sion dynamics based on 500 Monte-Carlo replications 
(Additional file 1) [19–46]. We have previously used this 
model for estimating the impact of non-pharmaceutical 
interventions and vaccination on reducing the COVID-
19 burden [19–21, 47]. Taking the province of Ontario, 
Canada as the population study, we simulated incidence 
of infections and outcomes over a 1-year time horizon 
from the beginning of April 2022. We accounted for the 
population immunity generated by vaccination in dif-
ferent age groups. The model was initiated with a 10% 
naturally acquired population immunity against infection 
and calibrated to an effective reproduction number of 1.2 
[25]. The 10% proportion of the population with immu-
nity due to a prior infection is based on the reported 
incidence [48], but it may be conservative given the pos-
sibility of undocumented asymptomatic or mild sympto-
matic infections.

We considered the primary and booster vaccination 
coverage in different age groups as of April 1, 2022 (sta-
tus quo scenario) [49], accounting for the temporal wan-
ing of immunity post-vaccination or infection. Primary 
vaccination is defined as the first two doses of approved 
vaccines in Canada (i.e., Moderna SpikeVax™, or Pfizer-
Bio-NTech Comirnaty). Booster refers to an additional 
(third) vaccine dose. Under the status quo, 81.2% of the 
Ontario population was fully vaccinated of whom 59% 
had received a booster. Among working adults aged 

18–65 years, the coverage of booster vaccination was 
~48% [50]. We also considered additional scenarios 
in which the booster coverage of working adults was 
increased by 20% and 80% over the status quo. Simula-
tions for each testing scenario were run by implementing 
the model in Julia Language, and statistical analyses were 
conducted using outputs in MATLAB.

Rapid antigen screening programs
For a given coverage of booster vaccination, we set the 
baseline scenario for the cost-effectiveness analysis to 
be “RT-PCR testing of only severe symptomatic cases” 
(TOSC) in the population. For the screening program, 
we used the distribution of workplace sizes in Ontario 
(Additional file  1: Fig. S2) [24]. Screening of asympto-
matic infection was simulated as an incremental to the 
baseline for workplaces with at least 50 employees, and 
with testing every Monday and Thursday. We considered 
scenarios in which either 50% or 100% of workplaces par-
ticipated in an RA screening program. As a requirement 
of the policy, we assumed that all individuals working in 
places with a screening program in effect adhere to the 
testing schedules. For the daily number of contacts inside 
and outside workplaces, we relied on recent empirical 
distributions from the CONNECT study on time trends 
in social contacts before and during the COVID-19 pan-
demic [23]. We assumed that the result of an RA test 
will be available within several minutes, but the result 
of an RT-PCR test will be available 1 day from sample 
collection.

To infer the temporal diagnostic sensitivity of the RT-
PCR assay, we fitted a time-dependent log-Normal prob-
ability density function [17] to serial testing data [51], 
assuming that the maximum of this function coincides 
with the peak of infectiousness. The diagnostic sensitivity 
of the rapid antigen tests was then expressed as the prod-
uct of the diagnostic sensitivity of the RT-PCR and the 
temporal percent positive agreement (PPA) of the rapid 
antigen tests with an RT-PCR test (Additional file 1) [2, 
6, 51–57]. Although a number of RA tests have been 
used in Canada, we performed our analysis with tempo-
ral diagnostic sensitivity of Abbott-PanbioTM (described 
in the Results section), as well as BD Veritor and Sofia 
tests (Additional file  1) derived based on the temporal 
PPA with an RT-PCR test relative to the time of symptom 
onset [54, 55]. A specificity of 99.8% was used for the RA 
tests and 99.9% for the RT-PCR test.

Screening programs were implemented with and 
without a confirmatory test for RA-positive cases 
(Table  1). For the screening program without a con-
firmatory test (SP1), if the RA test was positive, indi-
viduals would complete a 5-day isolation period before 
returning to work and normal activities (Fig. 1). For the 
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RA screening program with either a confirmatory RT-
PCR test (SP2) or a confirmatory RA test (SP3) 1 day 
after the initial RA positive [7, 58], the 5-day isolation 
period was reduced to 1 day if the confirmatory test 
was negative. The infectious period for an individual 
may be sampled to be longer than the isolation period 
(Additional file 1: Section 2). In this case, contacts will 
be associated with risk of disease transmission upon 
return to the workplace and normal activities.

The baseline of TOSC was implemented through-
out the simulations. We then varied the initiation of 
RA screening at the workplace, considering programs 
with a duration of 16, 32, and 52 weeks. Compari-
son between RA screening programs and TOSC was 

done at the same coverage of primary and booster 
vaccination.

Cost‑effectiveness analysis
We conducted a cost-effectiveness analysis of the RA 
screening programs (Table 1), with the benefits captured 
as QALYs. To estimate total costs and benefits, we used 
the number of mild and severe symptomatic infections, 
outpatient and emergency department visits, hospitali-
zations and ICU admissions, isolation days after a posi-
tive test and a false positive RA test, deaths, and the total 
number of different tests performed. Costs were captured 
from two perspectives of (i) healthcare, which included 
those associated with health outcomes and testing, and 

Table 1 Rapid antigen screening programs evaluated and compared with the baseline of RT-PCR testing of only severe symptomatic 
cases. Screening programs SP1, SP2, and SP3 are incremental to the baseline and include testing of severe cases

Scenarios Target population Status Test (result) Action 1 Action 2

Baseline General population Severe symptomatic RT-PCR(+) Start isolation for 5 days None

Screening program
 SP1 Workplace Asymptomatic RA(+) Start isolation for 5 days None

 SP2 Workplace Asymptomatic RA(+) Start isolation for 5 days and follow up with an RT-PCR 
test on the same day of initial RA(+)

If RT-PCR+, complete 
5 days of isolation, 
otherwise end isola-
tion

 SP3 Workplace Asymptomatic RA(+) Start isolation for 5 days and follow up with RA test a 
day after initial RA(+)

If second RA+, 
complete 5 days of 
isolation, otherwise 
end isolation

Fig. 1 Schematic illustration of testing and possible outcomes with isolation after infection. For the screening program with a confirmatory RT-PCR 
testing (SP2), RA-positive cases are required to isolate while awaiting the RT-PCR test result
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(ii) productivity loss due to illness (i.e., isolation for acute 
infection, hospitalization, and death), as well as time lost 
to testing (Table 2). All costs were converted and inflated 
to Canadian dollars in 2021 [72].

Cost-effectiveness results are presented by both the 
incremental cost-effectiveness ratio (ICER), and the 
incremental net monetary benefits (iNMB) for direct 
comparison of the testing scenarios. An ICER was cal-
culated for each testing scenario, in comparison to the 
baseline of TOSC. NMB was calculated by subtracting 
the costs of a scenario from the monetary value of health 
gained using a willingness-to-pay (WTP) threshold of 
$CAD 30,000 [73].

Results
Effectiveness of testing programs
Compared to TOSC in the general population, the larg-
est reduction of cumulative incidence was achieved when 
the workplace screening programs were implemented for 
the entire year without interruption (Fig.  2A3, B3, and 
C3). For screening programs with a shorter duration, an 
earlier start during a surge resulted in a lower cumula-
tive incidence. For example, RA screening that initiated 
at the start of a surge for a duration of 16 weeks reduced 
the total incidence (compared with TOSC) by 9.84% (95% 
credible interval [CrI]: 6.78% to 13.04%) in SP1, 7.97% 
(95% CrI: 5.57% to 11.4%) in SP2, and 9.28 (95% CrI: 5.47 
to 12.35) in SP3 (Fig. 2A1). With the same duration of RA 
screening but delaying the program until 16 weeks after 
the start of the surge (Fig.  2A4), the reduction of inci-
dence was 2.81% (95% CrI: 0.65% to 5.59%) in SP1, 2.77% 
(95% CrI: 0.52% to 4.51%) in SP2, and 2.43 (95% CrI: 
0.29 to 4.44) in SP3. These outcomes were qualitatively 
independent of the proportion of workplaces that par-
ticipated in the RA screening programs, or the coverage 
of booster vaccination (Fig. 2; Additional file 1: Fig. S5). 
However, increasing booster coverage of working adults 
had a significant effect on both delaying and suppressing 
the surge.

Cost‑effectiveness of testing programs (status quo 
scenario)
When RA screening was implemented by 50% of work-
places, SP1 with a 16-week duration from the start 
of a surge (Fig.  2A1) resulted in an average gain of 155 
QALYs per 100,000 population with incremental costs 
of $−5,566,013, compared to the baseline of TOSC with 
status quo vaccine coverage. This produces the median 
ICER value of −35,739 (95% CrI: −83,556 to −5,375) 
per QALYs gained (Additional file  1: Table  S5), sug-
gesting that SP1 is a cost-saving (dominant) program 
(Fig. 3). We estimated $10.2 (95% CrI: 5.3, 15.7) million 
iNMB associated with this RA testing program (Table 3). 

For the same duration of the RA screening, SP2 gener-
ated an average gain of 111 QALYs per 100,000 popula-
tion with incremental costs of $−3,001,675. The median 
ICER associated with SP2 was estimated at −27,828 (95% 
CrI: −93,085 to 16,388) per QALYs gained, with a 89% 
probability of being cost-saving; however, its iNMB was 
reduced, compared to SP1, to an estimated median of 
$6.4 (95% CrI: 0.9, 11.5) million. For RA testing with SP3, 
an average of 149 QALYs per 100,000 population was 
gained with incremental costs of $−6,215,098, resulting 
in the median ICER value of −42,166 (95% CrI: −95,002 
to −7681) per QALYs gained. This suggests that SP3 is a 
cost-saving (dominant) program. The iNMB generated 
by SP3 was estimated to be $10.2 (95% CrI: 5.0 to 15.9) 
million.

As the duration of screening extended, the mon-
etary benefits of RA testing reduced. For example, with 
a 32-week screening (Fig.  3A2), SP1 was cost-effective 
with a 62% probability (at the WTP threshold) with an 
estimated median ICER of 25,033 (95% CrI: -4,121 to 
55,925). However, producing an estimated median ICER 
of 40,917 (95% CrI: 4,303 to 91,282), SP2 was deemed 
not cost-effective (cost-effective probability<29%) at the 
WTP threshold due to additional costs of confirmatory 
RT-PCR testing and lower QALYs gained. Similar to SP1, 
SP3 was cost-effective with a 82% probability (at the WTP 
threshold) and an estimated median ICER of 14,509 (95% 
CrI: −21,018 to 50,235) per QALY gained. The median 
iNMB associated with SP1 and SP3 were positive at $1.1 
and 2 million, respectively, but with SP2 was negative at 
$−1.5 million per 100,000 population (Table  3). Similar 
outcomes were obtained when RA screening was imple-
mented for the entire 1-year simulation timelines, result-
ing in SP1 and SP3 being cost-effective with probabilities 
of 72% and 90%, respectively, and SP2 not cost-effective 
(cost-effectiveness probability<38%) (Fig.  3, Additional 
file  1: Table  S5). In this scenario with 1-year duration 
of screening, the iNMB obtained from all scenarios did 
not differ [Mann–Whitney U test, p>0.5]. When screen-
ing started late during a surge (Fig. 2A4, A5), neither RA 
testing programs were cost-effective at the WTP thresh-
old (Fig.  3), generating negative iNMB compared to the 
baseline of TOSC (Table 3).

Cost‑effectiveness of testing programs (increased booster 
coverage)
Increasing booster vaccination coverage among work-
ing adults aged 18 to 65 years improved the iNMB of 
screening programs (Table  3). For a 16-week duration 
of screening initiated early in a surge within the expo-
nential growth of cases, the per capita iNMB generated 
by SP1 and SP2 were statistically not different [Kruskal-
Wallis test, p>0.17], but both were different from SP3 
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Table 2 Costs (in 2021 Canadian dollars) and effects associated with disease outcomes and testing programs used in cost-
effectiveness analysis. Calculation for long-COVID and productivity loss associated with premature deaths are detailed in Additional 
file 2

RA rapid antigen, RT-PCR reverse transcription polymerase chain reaction, yrs years, QALY quality-adjusted life year
a Based on a time horizon of medical costs of 5 years
b Discounted at a rate of 1.5%

Input parameter Description Cost estimate (CAD$) Source

Testing (direct)
 RA testing Procurement and shipping of RA testing 8.00 Health Canada 

communica-
tion

 RT-PCR testing Testing includes human resource and laboratory 
capacity requirements

60.67 [59]

Health care costs
 Emergency room Per positive case 22.00 [60]

 Outpatient Per symptomatic case 6.45 [61, 62]

 Non-ICU hospitalization Average per patient 12,587.76 [63]

 ICU hospitalization Average per patient 52,756.06 [63]

 Chronic COVID-19 symptoms per hospitalized 
 casea,b

Net present cost of chronic COVID-19 symptoms 20,870.714 [64, 65]

Productivity loss by age group (indirect)
 RA testing To perform an RA test and obtain results 0.00

 RT-PCR test with a 0.5-h testing time One-day isolation to receive results of confirmatory 
test

Under 15 yrs: 0.00
15–24 yrs: 56.98
25–34 yrs: 187.12
35–44 yrs: 245.27
45–54 yrs: 251.24
55–64 yrs: 87.86
65+ yrs: 66.82

[66–68]

 Isolation of positive cases 5-day isolation as recommended by public health 
in Canada

Under 15 yrs: 0.00
15–24 yrs: 267.09
25–34 yrs: 877.14
35–44 yrs: 1,149.72
45–54 yrs: 1,177.68
55–64 yrs: 411.84
65+ yrs: 313.23

[67, 68]

 Hospitalization Loss of work productivity during hospitalization 
and recovery from illness

Under 15 yrs: 0.00
15–24 yrs: 2,093.96
25–34 yrs: 6,876.80
35–44 yrs: 9,013.81
45–54 yrs: 9,232.99
55–64 yrs: 3,228.82
65+ yrs: 2,455.72

[63, 65, 67, 68]

 Death due to COVID-19b Net present loss of work productivity from prema-
ture mortality

Under 15 yrs: 2,317,833.40
15–24 yrs: 2,092,194.38
25–34 yrs: 1,870,791.62
35–44 yrs: 1,613,844.69
45–54 yrs: 1,315,647.28
55–64 yrs: 969,577.01
65+ yrs: 776,233.85

[67, 68]

Measure of effect
 QALY decrement per symptomatic case Calculated during acute symptomatic infection 0.009 [69]

 QALY decrement per hospitalized  casea,b Calculated during hospitalization and recovery 0.44 [70]

 QALY decrement per  deathb Net present calculated based on life expectancy at 
the age of death

Under 15 yrs: 39.31
15–24 yrs: 35.48
25–34 yrs: 31.73
35–44 yrs: 27.37
45–54 yrs: 22.31
55–65 yrs: 16.44
65+ yrs: 13.16

[71]
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[Kruskal-Wallis test, p<0.001]. However, when the 
screening programs were extended to 32 weeks or 1 year, 
SP2 generated a greater per capita iNMB [Kruskal-Wal-
lis test, p<0.001] than SP1 or SP3. Compared to TOSC, 
the RA screening programs started late during a surge 
(Fig. 2B4, B5) were not cost-effective and generated nega-
tive iNMB (Table 3).

Increasing booster coverage of working adults by 80% 
over the status quo resulted in qualitatively similar out-
comes (Table 3). However, SP1 and SP2 performed equiv-
alently with similar iNMB [Kruskal-Wallis test, p<0.001], 
but higher than iNMB generated by SP3 for all programs 
that started early in the surge (Table 3). Neither screen-
ing programs were cost-effective and generated negative 
iNMB when started late during the outbreak. Our results 
remained qualitatively intact when 100% of workplaces 
with 50+ employees participated in the screening pro-
grams (Additional file 1).

Simulating scenarios with BD Veritor and Sofia RA 
tests, we found qualitatively similar trends in the cost-
effectiveness of the screening program and the iNMB 
generated by SP1, SP2, and SP3 (Additional file 1: Tables 
S8-S11). Specifically, screening programs with early 
start during the exponential growth of a surge were 

cost-effective, and increasing booster coverage of vacci-
nation improved their iNMB. However, iNMB achieved 
in each specific screening program varied by the type of 
RA test, indicating the influence of the test sensitivity on 
monetary benefits. Cost-effectiveness analyses of the RA 
screening programs using only direct costs of healthcare 
and testing (excluding indirect costs) revealed similar 
outcomes, with a greater iNMB obtained by SP1 than SP2 
or SP3 in all simulated scenarios under the same booster 
vaccination coverage (Additional file 1: Tables S12-S17).

Discussion
In this study, we evaluated the cost-effectiveness of work-
place screening post-Omicron wave of BA.1 variant. We 
found that increasing booster coverage of working adults 
improved outcomes and therefore higher net monetary 
benefits of the screening program would be expected 
under a higher coverage of booster doses. In addition 
to booster vaccination, the timing for the start of RA 
screening during a surge and the duration of the program 
can have a large impact on the cost-effectiveness of the 
testing strategy. Delaying the start of RA screening until 
after the exponential growth or around the peak of a 
surge would not be a cost-effective strategy. Overall, an 

Fig. 2 Projected average daily incidence of all (symptomatic and asymptomatic) infections for TOSC (black); SP1 in workplaces without a 
confirmatory test (blue); SP2 in workplaces with a confirmatory RT-PCR test (orange); and SP3 in workplaces with a confirmatory RA test (red). 
Screening programs were implemented for 50% of workplaces with a size of 50+ employees. The booster vaccination among adults aged 18–64 
years was set to reported coverage as of April 1, 2022 [status quo] (A1–A5); an increase of 20% over status quo (B1–B5); and an increase of 80% 
over status quo (C1–C5). Shaded areas indicate the duration of SP1, SP2, and SP3; testing of severe cases with RT-PCR tests was implemented 
throughout the entire simulation. For SP2, RA-positive cases were isolated while awaiting the RT-PCR test result
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RA screening program without a confirmatory test may 
be a preferred strategy.

Although cost-effectiveness analysis is vital to policy 
decision-making regarding testing strategies, determining 

an optimal RA screening program is a challenging task [74, 
75]. Previous research on RA testing within schools has 
highlighted how the optimal testing strategy is depend-
ent on the specific objectives and their associated tradeoffs 

Fig. 3 Cost-effectiveness plane derived from 500 independent Monte-Carlo simulations for different testing scenarios with the associated 95% 
credible ellipse of the data point distributions. Colors correspond to testing only severe cases (black dot); SP1 in workplaces without a confirmatory 
test (blue); SP2 in workplaces with a confirmatory RT-PCR test (orange); and SP3 in workplaces with a confirmatory RA test (red). Screening 
programs were implemented for 50% of workplaces with a size of 50+ employees. The booster vaccination among adults aged 18–64 years was 
set to reported coverage as of April 1, 2022 [status quo] (A1−A5); an increase of 20% over status quo (B1–B5); and an increase of 80% over status 
quo (C1–C5). Comparison was done between the baseline for testing only severe cases (TOSC) and each of the screening programs with the same 
booster coverage. Costs are in 2021 Canadian dollars

Table 3 Estimated median iNMB (in million CDN$) and 95% credible intervals [CrI] of the mean iNMB values for comparing each 
testing program with the baseline scenario of testing only severe cases, and with timelines corresponding to scenarios in Fig. 2

Booster coverage Duration of the screening program in weeks Testing 
program

 0 to 16 0 to 32 0 to 52 16 to 32 16 to 52

iNMB 95% CrI iNMB 95% CrI iNMB 95% CrI iNMB 95% CrI iNMB 95% CrI

Status quo as of April 1, 2022 10.2 5.3, 15.7 1.1 −4.0, 7.1 1.7 −3.3, 7.8 −11.0 −11.9, −10.2 −9.1 −10.0, −8.3 SP1

6.4 0.9, 11.5 −1.5 −6.7, 4.0 −0.8 −6.1, 4.7 −9.5 −10.4, −8.7 −8.0 −8.7, −7.2 SP2

10.2 5.0, 15.9 2.0 −3.0, 7.8 2.9 −2.2, 8.6 −8.6 −9.5, −7.7 −7.1 −7.9, −6.3 SP3

20% increase over status quo 14.3 6.4, 21.6 5.3 −2.9, 12.8 5.0 −3.0, 12.3 −9.5 −10.7, −8.5 −8.2 −9.4, −7.2 SP1

14.1 6.4, 21.7 7.1 −0.5, 15.0 6.4 −1.5, 14.1 −8.7 −9.9, −7.7 −6.7 −7.9, −5.7 SP2

7.1 −0.6, 13.9 0.4 −7.3, 7.7 0.4 −7.2, 7.6 −8.7 −10.0, −7.7 −7.3 −8.6, −6.4 SP3

80% increase over status quo 13.8 4.7, 22.1 7.7 −0.8, 16.0 3.0 −5.1, 11.2 −4.8 −6.6, −3.1 −8.2 −10.0, −6.4 SP1

11.8 3.3, 20.4 7.7 −0.9, 16.7 3.7 −4.6, 12.8 −6.6 −8.0, −5.2 −9.1 −10.5, −7.8 SP2

5.4 −3.3, 13.7 1.1 −7.3, 9.2 −2.7 −11.0, 5.2 −6.0 −7.4, −4.6 −8.8 −10.1, −7.3 SP3
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[76]. These tradeoffs arise from the interplay between 
testing and incidence: more frequent testing reduces the 
extent of transmission in the community from the identi-
fied cases, which may then justify less frequent testing. 
Furthermore, the evolving nature of the pandemic may 
change the cost-effectiveness of workplace-screening pro-
grams, including the immune-evasiveness and transmissi-
bility of the virus, levels of vaccine-elicited protection, and 
durability of immunity against reinfection [77, 78].

Our findings rest on a number of simplifying assump-
tions in the model. First, we assumed that all individuals 
who test positive self-isolate for 5 days (SP1) or at least 
1 day (SP2, SP3) if the confirmatory RT-PCR or RA test 
was negative. The implication of this assumption is that 
their daily contacts, both in and outside the workplace, 
are substantially reduced. For the screening program 
with a confirmatory RT-PCR test (SP2), we assumed only 
a 1-day turnaround time for the results without delay in 
sample collection from the time of the first positive RA 
test. However, additional delay in sample collection and 
results could alter our results further in favor of only RA 
tests for asymptomatic screening. For the scenarios eval-
uated here, we considered a frequency of two RA tests 
per week, as recommended by the stakeholders and con-
sensus among participants in the Health Canada work-
shop held on January 31, 2022. However, the frequency 
of testing may vary among different workplaces [79] and 
could affect the cost-effectiveness results.

Our analysis is based on temporal sensitivity of 
Abbot-Panbio, BD Veritor, and Sofia rapid antigen tests; 
however, there are several RA tests currently being 
used with similar sensitivity and specificity estimates 
[2]. We calibrated the transmission parameter in the 
model to the estimated reproduction number in April 
2022 [25], which implicitly accounted for the effect of 
non-pharmaceutical interventions. This transmissibil-
ity could change with time (e.g., seasonal effects) and 
other virus-specific characteristics. For example, with 
the same transmissibility, the iNMB achieved by imple-
menting a screening program would be expected to 
decrease for a more severe variant that causes higher 
rates of hospitalization and/or death. Our analysis 
was restricted to the size and the proportion of work-
places participating in the screening program without 
consideration of their type or other attributes [79, 80] 
such demographics of the workforce, risk of exposure, 
and contact patterns (e.g., essential workplaces, health-
care facilities or other congregated settings) [7, 81–85]. 
In settings like hospitals or long-term care facilities, 
a screening program may consider additional com-
ponents such as different frequency of RA testing for 
employees and patients, or screening of visitors. We 

considered a 10% naturally-acquired immunity at the 
initiation of the model based on incidence of disease as 
of April 2022 in Ontario; however, this level is unlikely 
to alter the qualitative aspect of the results due to a 
significantly higher level of immunity generated by the 
two-dose vaccination in primary series.

Conclusions
Our findings provide important insights which can 
inform testing strategies. The modeling outcomes sug-
gest that RA testing of asymptomatic infection could 
provide substantial economic benefits, especially when 
the capacity for RT-PCR testing with rapid turna-
round times is limited. Coverage of booster vaccination 
among working adults remains an important consid-
eration in the implementation of RA screening. As 
the booster coverage increases, greater monetary ben-
efits may be achieved by an RA workplace-screening 
program; however, depending on the starting time of 
screening during a surge, such benefits may be compa-
rable or even lower than those accrued by testing only 
severe cases.
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