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Abstract 

The coronavirus disease 2019 (COVID‑19) has developed into a pandemic. Data‑driven techniques can be used to 
inform and guide public health decision‑ and policy‑makers. In generalizing the spread of a virus over a large area, 
such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult 
for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more gran‑
ular level. A primary concern is exposing local virus hot‑spots, in order to inform and implement non‑pharmaceutical 
interventions. A hot‑spot is defined as an area experiencing exponential growth relative to the generalised growth 
of the pandemic. This paper uses the first and second waves of the COVID‑19 epidemic in Gauteng Province, South 
Africa, as a case study. The study aims provide a data‑driven methodology and comprehensive case study to expose 
location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model 
to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster’s 
severity, progression and whether it can be defined as a hot‑spot.
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Background
In late December 2019, a novel coronavirus, named 
“Severe Acute Respiratory Syndrome-related Coronavi-
rus type 2” (SARS-CoV-2), emerged in the city of Wuhan, 
Hubei province of People’s Republic of China [1]. The 
virus rapidly spread by the 11th of March 2020, resulting 
in a confirmed global pandemic, known as “Coronavirus 
Disease 2019” (COVID-19). As of the 5th of March 2021, 
the virus was affecting more than 218 countries, with the 
total number of confirmed cases exceeding 116 million 
and approximately 2.6 million fatalities worldwide being 
attributed to the effects of the virus. A large, worldwide 
modelling effort is currently underway to improve pub-
lic health policy decision-making with regards to the still 
ongoing COVID-19 pandemic [2]. Many research groups 
and national response teams have looked into country 
specific intervention strategies and the effects they have 
on the transmission rate of the virus as well as the impact 
of pre-existing country characteristics on the transmis-
sion rate [3, 4].

On the 5th of March 2020, South Africa recorded its 
first COVID-19 case and three weeks later, on the 27th of 
March, South Africa entered a full government-enforced 
lockdown [5]. This formed part of a five-tier risk-adjusted 
alert levels system [6]. The full list of South Africa’s moves 
between lockdown levels can be seen in Table 1, [7]. The 
first wave of COVID-19 continued in South Africa until 
October 2020 where the number of new cases had settled 
to a manageable amount. By late November 2020, South 
Africa’s number of cases started to increase, and the sec-
ond wave of the pandemic began. The risk-adjusted sys-
tem implemented allowed a controlled reopening/closing 
of the economy influenced by a set of factors, including 
the virus transmission rate, number of infectious cases, 
capacity of health facilities, the extent of the effectiveness 

of the implemented public health interventions and the 
economic and societal impact of continued restrictions.

The University of Witwatersrand and iThemba LABS 
COVID-19 modelling group have formed part of the 
Gauteng Premier’s COVID-19 Advisory Committee, 
providing an in-depth analysis of the province’s progress 
in the pandemic [8]. As part of the Gauteng Premier’s 
COVID-19 Advisory Committee, our modeling efforts 
provide information that government stakeholders use to 
inform their decisions, thus allowing a statistical ground 
for changes in alert levels and distribution of resources.

COVID-19 data contain many complexities that must 
be taken into account when extracting information to 
guide public health decision- and policy-makers [9]. This 
complexity includes factors such as the large number of 
misclassified or under-reported infections, inconsistency 
and limitations in testing as well as fluctuating infec-
tion and fatality rates as influenced by social/behavioral 
dynamics.

As this data is the basis for modeling and therefore, 
informing decisions around the risk-adjusted policies, 
understanding and accommodating these complexities 
in the model is vital. In generalising the spread of a virus 
over a large area, such as a province, it must be assumed 
that the transmission occurs as a stochastic process. This 
statistically random spread of a virus through a popula-
tion is the core of the majority of Susceptible-Infectious-
Recovered-Deceased (SIRD) models and is dependent on 
factors such as number of infected cases, infection rate, 
level of social interactions, susceptible population and 
total population [8]. However, the spread of COVID-19 
and therefore, the data representing the virus progres-
sion do not always conform to a stochastic model. In this 
paper, we will focus on the most influential non-stochas-
tic dynamics of COVID-19, hot-spots.

A virus hot-spot can be defined as a cluster of cases 
within an area whose spreading dynamics do not con-
form to the general growth of the pandemic, exhibiting 
an exponential, short-lived growth. As the collections 
of cases clustered as hot-spots described in this paper 
do not conform to the macro-dynamics of their loca-
tion, they need to be clearly defined and understood in 
order to accurately understand and model the virus pro-
gression. The geo-localization and clustering analyses of 
cases for this purpose are therefore, vital and can be done 
using advanced artificial intelligence (AI) geo-clustering 
methods. This clustering approach can be used to define 
individual clusters as hot-spots and allows the corre-
sponding cases to be removed from the stochastic model 
- providing stochastic predictions that are not biased by 
the hot-spot dynamics [7].

The structure of this paper is as follows, firstly the 
data and data collection is described followed by the 

Table 1 South Africa’s alert level progression for waves 1,2 and 3

Alert level Wave Start date Total cases Recoveries Fatalities

5 1 27 March 
2020

927 12 0

4 1 1 May 2020 5951 2382 116

3 1 1 June 2020 34,357 17,291 705

2 1 18 August 
2020

592,144 485,468 12264

1 2 21 Septem‑
ber 2020

661,936 591,208 15,992

3 2 29 Decem‑
ber 2020

1,021,451 858,456 27,568

1 2 1 March 
2021

1,513,959 1,431,336 50,077

2 3 31 May 2021 1,665,617 1,559,337 56,506

3 3 16 June 2021 1,774,312 1,620,317 58,223
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methodology of the clustering algorithm used. The paper 
continues to investigate the results of the clustering 
together with the methodologies and parameterisation of 
the clusters. The parameterisation of the clusters includes 
whether or not a cluster is a hot-spot, the temporal pro-
gression and the severity of the cluster. Finally the appli-
cations of the classification and parameterisation are 
evaluated and validated using the second wave.

In the existing scholarly literature, some studies 
have performed a hot-spot analysis of COVID-19. For 
instance, Shariati and colleagues [10] have computed 
Anselin Local Moran’s I indices to identify high- and low-
risk clusters of COVID-19 worldwide. Authors were able 
to locate San Marino and Italy as territories characterized 
by a dramatically high toll of deaths, with infectious hot-
spots widespread in Northern Africa as well as Southern, 
Northern and Western Europe. Noteworthy, infectious 
cases occurring in these hot-spots represent about 70 
percent of all global infectious cases.

Other hot-spot analyses have been carried out at the 
nation level. Mo and coworkers [11] coupled local outlier 
analysis with hot-spot analysis based on space-time cube 
metrics in mainland China. Authors were able to demon-
strate a rather quick, uneven spreading of the outbreak 
from the cities of Wuhan and Shiyan to the neighbouring 
areas and provinces.

In Italy, combining a variety of geospatial analyti-
cal methods (spatial auto-correlation, spatio-temporal 
clustering and kernel density techniques), infodemiol-
ogy (Google Trends and web searches analysis) and AI 
methods (machine learning and Adaboost algorithm for 
single?factor modelling), Niu and collaborators [12] were 
able to provide an in-depth assessment of the COVID-19 
outbreak, in terms of its distribution and spreading char-
acteristics. Hot-spots could be identified mainly in north-
ern Italy.

Purwanto and colleagues [13] explored COVID-19 dis-
tribution patterns in East Java (Indonesia). Authors were 
able to identify Surabaya as major hot-spot, from which 
the outbreak reached cities characterized by high den-
sity of roads, food venues, and commercial and financial 
facilities.

AI models in healthcare are not limited to epidemics 
and are utilised for various applications including drug-
drug interactions [14] and the identification of salient 
sites in epigenetics [15].

In the present investigation, we have provided a robust 
statistical method for distinguishing between hot-spots 
and areas characterized by stochastic spreading of 
COVID-19 cases. We applied this analytical framework 
to the first and second waves, taking Gauteng prov-
ince, South Africa, as a case study. These methods are 

general-purpose and can be, as such, applied to other 
countries as well.

The primary aim of this paper is for policy makers and 
local population to visualise and understand the location 
specific dynamics of the virus. This is vitally important 
for implementation of non-pharmaceutical intervention 
on a local level.

Materials and methods
In order to expose the location specific COVID-19 
dynamics within a given area, the following methodol-
ogy is used. Firstly the geo-coded case data is processed, 
for the area of study. The data is clustered using Gauss-
ian Mixture Models, grouping cases by their locations, 
at a selected granularity. Once the cases are clustered, 
the parameters of logistic growth are calculated for each 
cluster to reflect the area specific virus progression. An 
analysis of the cluster dynamics can then be used to 
calibrate/define criterion for clusters to be considered 
hot-spots, the extent to which the cluster is active and a 
measurement of risk associated with it. During the first 
wave of the pandemic, the definitions must be redefined 
and improved as new data is made available. However 
after the completion of the first wave the first wave data 
can be used to produce criterion reflective of the area of 
analysis and can therefore be used in the analysis of sub-
sequent waves. In this paper it is assumed that the initial 
wave of the pandemic is complete and is utilised in the 
calibration of cluster definitions.

Study area
Gauteng ( 26.2708◦ S, 28.1123◦ E) is one of the nine prov-
inces of South Africa, shown in Fig. 1. Although Gauteng 
is the smallest of South Africa’s provinces, with an area 
of 18,176  km2 , it is home to approximateley 16 million 
people, more than a quarter of the countries population. 
South Africa’s largest city, Johannesburg, as well as it’s 
administrative capital, Tshwane, are situated in Gauteng.

Data processing
The data required for the hot-spot geo-localization 
analysis needs to be of a high level of detail. Therefore, 
for this study anonymized data provided by the Gauteng 
Department of Health is used. The data contains fea-
tures including; Case ID, recorded address, test date and 
geo-localization data (including latitude and longitude 
coordinates). The National Institute of Communicable 
diseases (NICD) collates the daily data of SARS-COV-2 
tests that are conducted both in public and private labo-
ratories across South Africa. The NICD publishes a daily 
report detailing the provincial breakdown of the COVID-
19 Cases in South Africa [16].
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The NICD’s daily data is fed into the Gauteng 
Department of Health’s data management system 
where each case is geo-coded to their specific geo-
location before being de-identified (for anonymity 
of cases). The processed data is then sent to external 
organisations, such as ourselves, for analysis. Before 
the data can be used for clustering, a final filtering is 
done to remove any geo-localization data that has an 
incorrect address recorded or an issue interpreting/
processing the address.

For the first wave in Gauteng, March–October 2020, 
218720 geo-coded case samples were used. During the 
second wave progression, November 2020 to February 
2021, 191750 samples were used. As of May 2021, the 
geo-coded case data was no longer made available.

Clustering cases by geo‑location
In order to analyse the area distribution of COVID-
19 cases, AI techniques provide an excellent tool in 
grouping cases geographically. In this paper we focus 
on the unsupervised machine learning method, Gauss-
ian mixture models. This model allows us to group 
cases based on their location. The output clusters can 
therefore be used for analyse and to model the dynam-
ics of the virus within the determined area. The gen-
eration of the Gaussian Mixture Model distributions 
and corresponding HTML maps were implemented in 
Python 2.7, utilising the Sckit-learn API package [17].

AI and clustering: Gaussian mixture model (GMM)
The given problem is using the location of residence of 
each COVID-19 case in Gauteng to produce clusters. 
Once defined, these clusters can be analysed and accu-
rately labelled as hot-spots or non-hot-spots. There 
are various clustering methods where unsupervised 
machine learning algorithms are implemented to solve 
a 2-dimensional (latitude/longitude co-ordinates) prob-
lem. After evaluating various methods including the 
k-means algorithm, the Gaussian mixture model was 
chosen. Gaussian Mixture models provide a probabil-
ity-based approach to the likelihood of a COVID cases 
being within a cluster by producing a 2-dimensional 
Gaussian probability model overlaid onto the Gauteng 
map area, shown in Fig.  2. The clusters produced can 
overlap with each other, which encapsulates the pos-
sibility that hot-spots may very well also overlap with 
each other. The corresponding weight, φ , generated for 
each cluster, provides an estimate of the importance of 
the cluster, as well as another variable for filtering false 
clusters from actual hot-spots [18].

A Gaussian Mixture model is an algorithm which oper-
ates by generating k 2-dimensional Gaussian probability 
distributions, where k is a specified hyper-parameter. 
Thus, we are required to generate means, µj , covariance 
�j and weighting, φj , where the index specifies the jth 
Gaussian cluster. So, the probability of a new case, p(x), 
occurring at a given point x is a linear combination of 
probabilities from all the generated clusters:

Fig. 1 Study area. a Regional map of South Africa. b Map of Gauteng province showing breakdown of wards
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where N is the normal distribution. We generate the set 
of normal distributions (with associated weights, means 
and covariances) with an algorithm which optimally 
fits the probability distributions given the set of already 
known COVID-19 cases and their coordinates. In 
order to generate k-Gaussian probability distributions, 
the Expectation-Maximisation algorithm is employed. 
At the expectation step, we calculate the probability 
that a point xi is generated by the jth Gaussian for all k 
distributions:

(1)p(x) =

k
∑

j=1

φjN (x|µj ,�j),

(2)γij =
φjN (xi|µj ,�j)

k
q=1 φjN (xi|µ1,�q)

In the maximisation step, the probabilities γij are used to 
generate new cluster parameters. That is, new mean µj , 
covariance �j and weight φj are updated as follows:

These steps are iterated through until the convergence 
criteria are met. In our case, the variable x = {x, y} is the 
set of longitudinal, y and latitudinal coordinate, x.

When applying the GMM algorithm for the cluster-
ing of cases in Gauteng, the number of clusters gener-
ated is an important metric. The number of clusters must 
be selected to best describe the specific virus dynamics, 
as visualised in Fig.  3. In the case of Gauteng Province, 
it was advantageous to have a cluster size approximately 
the size of a suburb, with at least an average of 100 cases 
per cluster. It was determined that 1500 clusters was the 

(3)

φj =

N
∑

i

γij

N
, µj =

N
∑

i

∑N
i γijxi

∑N
i γij

, �2
j =

∑N
i γij(xi − µj)(xi − µj)

T

∑N
i γij

Fig. 2 Map visualisation of Gaussian Mixture Model clustering of COVID‑19 cases in Gauteng. a Map showing case data input for the model. b Map 
showing case data and clustering model output

Fig. 3 Visualisation of GMM cluster output for different number of clusters. a 10 Clusters. b 50 Clusters. c 1500 Clusters
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optimal number of clusters for the Gauteng province. 
This led to the average cluster area being 1.9  km2 and 
an average of 146 cases/cluster for the period of the first 
wave. Therefore providing the highest level detail possi-
ble while maintaining sufficient statistics.

Susceptible‑infectious curve
Once the latent variables of the Gaussian probabilities 
distributions (weights, means, standard deviation) have 
been found through the processing of COVID-19 cases in 
Gauteng, it is important to verify which clusters are hot-
spots, or highly infectious areas/districts of the province. 
In order to accomplish this, the time dependent progres-
sion of cases is inspected for each cluster independently. 
That is, the cumulative number of cases was computed as 
a function of the date the patients were first recorded to 
have contracted the virus.

An aspect to consider is whether the clusters found fol-
low the Susceptible-Infection (SI) Curve, which model 
the number of susceptible people who get infected, SI(t), 
over time, t, within a given area/cluster. The SI equation 
is as follows:

where SI0 is the total number of predicted cases within a 
cluster once it has saturated the susceptible population, 
SI1 represents the rate of infection of the virus, and SI2 
is the number of days before the peak of growth of the 
cluster. An example of the SI Curve, fit to cumulative 
cases of a single cluster, is shown in Fig. 4. This function 
is a solution to the logistic differential equation, a simple 
system which describes the number of infected cases in 
a given population. The model is applicable as we expect 
a small increase of infection cases in the early stages of a 

(4)SI(t) =
SI0

1+ eSI1(t−SI2)

susceptible population, and then a sharp increase as the 
disease spreads rapidly throughout the cluster. A plateau 
is expected once all susceptible people within a cluster 
are infected. The SI curve can therefore, be fitted to the 
time-series of each cluster in order to generate the clus-
ter’s localised virus parameters. A poorly fit SI curve can 
indicate that the cluster is not a COVID-19 hot-spot, as it 
does not follow an accurate description of disease spread.

Once the cases throughout Gauteng province have 
been clustered and described, each cluster can be 
described through the following parameters; Total 
Cumulative Cases ( NTC ), 1st and 2nd standard devia-
tion area ( A1sd and A2sd , respectively), the susceptible-
infection parameters ( SI0 , SI1 and SI2 ) and the ward and 
municipality where the cluster is located.

Cluster analysis and hot‑spot definition using the first 
wave
In order to understand the cluster level COVID-19 
dynamics in Gauteng, the GMM clustering method, 
described in the previous section, is applied to the Gaut-
eng case data for the calibration period available. The SI 
parameters are then calculated, using Eq. 4, for the tem-
poral case progression of each cluster. Using the cluster 
parameters, of available calibration data, the following 
criterion are designed to analyse and categorise hot-spot 
clusters. The following definition uses the entirety of the 
first wave to define the criterion which can thereafter be 
applied to proceeding waves occurring in Gauteng. The 
first wave data used for calibration contains 218720 sam-
ples, leading to an average of 146 cases per cluster.

Hot‑spot classification on density
The density distribution of the first wave clusters, shown 
in Fig.  5, forms a Gaussian like shape at low densities, 

Fig. 4 SI curve example. Example of SI curve fit to cumulative COVID‑19 cases in a cluster
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0–350 cases/km2 , and a sporadic tail of high densi-
ties, 350 to more than 30000 cases/km2 . The uniform-
ity of low-density clusters is found to be associated with 
expected growth. When cutting the densities at the one 
Sigma interval we are able to produce a density threshold, 
ρth , of 196.05 cases/km2 . Clusters with densities greater 
than the threshold are found to have rapid, non-stochas-
tic growth. This density threshold, therefore, allows us 
to define hot-spot clusters as any cluster whose density 
exceeds the determined density threshold.

Hot‑spot cluster activity definition
Once a hot-spot cluster’s total cases reach the plateau or 
pass the peak of a surge, it can be said that the dynamics 
of the cluster are no longer that of a hot-spot. The activity 
of a cluster at any point in time can, therefore, be quan-
tified as the ratio of the total cases in the cluster, at the 
respective time, divided by the cluster’s total predicted 
cases, SI0 , described in Criteria 5:

where the activity threshold, Lth , represents the upper 
bound on actively growing clusters. The activity thresh-
old assumes that only 1% of clusters remain active in 
the period after the first wave as almost all clusters have 
returned to normal dynamics. Therefore, as shown in 
the activity distribution, Fig. 6, the activity threshold for 
Gauteng based on the first wave, is determined to be 0.85.

Risk index definition
The risk index, RI, quantifies the deviation of the data 
from the hypothesis of a single wave. It therefore gives 
a measure of the risk of a cluster behaving non-stochas-
tically for a future wave. The risk index is defined in 
Criterion 6 and 7.

(5)
NTC(t)

SI0
< Lth,

Fig. 5 Gauteng first wave cluster density distribution. Density distribution for COVID‑19 clusters for the period of the first wave in Gauteng

Fig. 6 Gauteng first wave cluster activity distribution. Activity distribution for COVID‑19 clusters after the completion of the first wave in Gauteng
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where NTC(t) and SI0(t) are the total cases, and total pre-
dicted cases in the cluster at a given time, t, respectively. 
Applying Criterion 7 to both the hot-spot and stochastic 
clusters independently, leads to the distribution shown 
in Fig. 7. The RI threshold assumes that only 1% of clus-
ters are high risk in the subsequent period of the first 
wave with a corresponding proportional error. Figure  7 
therefore shows the risk index at which a cluster can be 
defined as high risk location within Gauteng Province.

Therefore, in the analysis of future waves in Gauteng, 
a hot-spot cluster with a RI greater than 11 can be clas-
sified as a high risk hot-spot. Similarly a non-hot-spot 
cluster with a RI greater than 20 can be classified as a 
developing high risk cluster.

Applying calibrated cluster definitions to subsequent data
The criterion for clusters to be labeled as a hot-spot, as 
well as the activity and risk index definition are calibrated 
using historic data. In this paper the first wave data is 
used for calibration. From the start of a subsequent wave, 
cases are clustered as they are made available and are 
analysed using the calibrated criterion. For each iteration 
of new data available, the clustering and analysis are re-
applied. Therefore as new data becomes available, all of 
the samples, for the period of analysis, are used for clus-
tering independently to previously determined clusters. 
For each point in time during the progression of sub-
sequent waves, the study is able to expose the location, 

(6)

A(t) =100 ·

(

NTC(t)− SI0(t)

SI0(t)

)

, B(t) = 10 ·

(

1+
SI0(t)

NTC(t)

)−1

,

(7)RI =

{

A(t)+ B(t), if B(t) > 8,

A(t), if B(t) ≤ 8.

temporal progression and severity of active hot-spots as 
well as cluster’s with high likelihood of developing into 
hot-spots.

Results and discussion
Analysis of cluster definition calibration on Gauteng 
Province’s first wave
We calibrated the density criterion to the first wave of 
COVID-19 cases in Gauteng Province where ρcluster(t) is 
the case density of a given cluster on a given day and ρth is 
the minimum density stipulating hot-spot dynamics. Out 
of 1500 clusters, once split on the density threshold 607 
of the clusters are defined as hot-spots and the remaining 
893 clusters are defined as normal clusters.

In order to evaluate this definition further we com-
pare the susceptible-infection parameters of the clusters 
defined as hot-spots against the stochastic or non-hot-
spot clusters. Figure 8 shows that hot-spot clusters have 
on average an increased number of total cases, ± 180 , 
compared to the stochastic clusters, ± 90 . Hot-Spot clus-
ters also have a slightly increased exponential slope with 
a period of ± 10 days where stochastic clusters period of 
exponential slope can be seen to be ± 11 days.

An evaluation of this hot-spot definition can be done 
using a comparison of the total cases in stochastic clus-
ters and hot-spot clusters during the first wave. Fig-
ure  9 reflects that during the first wave approximately 
two thirds of the cases in Gauteng occurred in hot-spot 
clusters.

This case distribution shows excellent coherence 
with first wave predictions (Using a Di-SIRD lin-
ear control model [7]) compared to data, as shown 
in Fig.  10. This example of a stochastic prediction 

Fig. 7 Gauteng first wave risk index distributions. Risk Index distributions broken‑down into hot‑spot and stochastic clusters
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demonstrates how the emergence of hot-spots in June 
2020 did not follow the expected stochastic progres-
sion of the virus.

Therefore, it can be seen that the density cut-off 
value of 196 cases/km2 , defining hot-spot clusters, suc-
cessfully is able to extract the clusters growing more 
exponentially and sporadically from those with a more 
uniform, random growth.

Hot‑spot activity analysis
The time dependent evolution of newly defined hot-
spots as well as hot-spots that are returning to stochas-
tic dynamics, during the first wave, can be analysed using 
Criterion 5. These dynamics are visualised in Figs. 11 and 
12, respectively.

To understand the growth of the hot-spot clusters an SI 
curve is fit to the cumulative number of hot-spot clusters 

Fig. 8 Gauteng first wave cluster parameter distribution Comparison. Susceptible‑Infectious parameter distributions for clusters

Fig. 9 Number of hot‑spot cases over time during the first wave. Comparison of hot‑spot and stochastic growth using number of cases per day
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shown in Fig. 11. The daily increase of hot-spot clusters 
peaks in mid-July, which is confirmed by the SI2 param-
eter which determines the inflection of exponential 
growth to occur on the 10th of July, 101 days after the 1st 
of April. The cumulative hot-spot clusters reaches its pla-
teau in mid-August coinciding with South Africa’s move 
from level 3 to level 2, with 594 of the total 1, 500 clusters 

having already developed into hot-spots. The SI fit to the 
cumulative number of hot-spot clusters describes the 
period of the exponential growth to be approximately 12 
days ( 1SI1).

Figure  12 shows not only the emergence of hot-spot 
clusters but also when hot-spots progress back to a 
stochastic dynamics, described by Criterion 5. From 

Fig. 10 Example of first wave stochastic prediction versus data. Di‑SIRD model stochastic prediction vs data for Gauteng for June 2020

Fig. 11 First wave cumulative and emerging COVID‑19 hot‑spot clusters in Gauteng. Number of new clusters developing into hot‑spots (top). Total 
number of clusters defined as hot‑spots for the first wave in Gauteng (bottom)
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mid-July, the majority of hot-spot clusters begin to reach 
their peak progression, and therefore, progress back to 
stochastic clusters. By the end of August a maximum of 
39 hot-spots have reached their peak and by the end of 
September all but 21 cluster have progressed back to nor-
mal dynamics.

Implementation of hot‑spot definition on Gauteng 
Province’s second wave
Once the cluster definitions are calibrated on histori-
cal data, they can be applied to subsequent data. As the 
majority of hot-spots manifest during pandemic waves, 
it is ideal to implement the analysis on data specific to 
a wave of interest. In this section the first wave defini-
tions are applied to the second wave. During the second 
wave period clustering and analysis was applied weekly 
on receiving data. During this period, a total of 191,750 
cases were analysed. The case progression attributed to 
hot-spot and normal clusters is shown in Fig. 13. It can 
be seen that during the second wave nearly 60% of cases 
occurred in hot-spots.

A total of 461 clusters were categorised as hot-spot 
clusters and 1039 clusters had normal growth dynamics, 
as shown in Fig. 14.

At the start of the second wave, 11 November 2020, 48 
clusters were found to be active hot-spots. At the end of 
the second wave, 15 March 2021, 7 hot-spots remained 
active and 454 clusters had returned to normal dynamics.

When looking at the clusters in terms of their risk 
index, 313 of the hot-spot clusters were classified as 

high-risk and 263 stochastic clusters were classified as 
emerging clusters. More than 90% of clusters initially 
labeled emerging stochastic clusters, developed into hot-
spot locations during the second wave. The risk index 
was used to inform local stake-holders of the wards 
and municipalities associated with the most severe hot-
spot clusters. The most severe wards during the second 
wave were found to be ward 74804016 in Merafong City 
municipality, wards 79700088 and 79700005 in Ekurhu-
leni municipality, wards 74201033, 74201007, 74201008, 
74201036, 74201010 and 74201024 in Emfuleni munici-
pality, wards 79900105, 79900082 and 79900061 in City 
of Tshwane municipality and 79800053 and 79800061 in 
the City of Johannesburg municipality.

As all clusters activity, severity and location were 
expose at each interval of analysis during the second 
wave, both provincial and municipal stake-holders were 
able to visualise and sort cluster’s of interest to expose 
location specific virus dynamics.

Exposure and applications of hot‑spots
The definition and parameterization of clustered cases 
provides various applications in informing stakeholders 
in their decisions related to COVID-19 interventions and 
preventative measures. The following section discusses 
two of these applications. The first and most important 
role is to expose locations of extreme virus dynamics, in 
order to inform intervention strategies, advance social 
awareness and the adoption of proper behaviors. The 

Fig. 12 Daily number of active hot‑spot clusters. Number of clusters developing into active hot‑spots and number of hot‑spot clusters becoming 
no longer active (top). Total number of clusters developing into active hot‑spots (bottom)
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second application allows for the hot-spot dynamics to be 
integrated into epidemiological models.

Exposing hot‑spot and high risk clusters
The primary need for COVID-19 Hot-Spot classifica-
tion is to target clusters/areas where non-conforming, 
exponential growth is occurring. Using the definition of 
hot-spot clusters developed in this paper, clusters can 
effectively be classified and their progression and dynam-
ics described. Table 2 summarizes descriptive parameters 
of a classified cluster.

These three parameters describing each cluster are able 
to inform stakeholders not only on what areas are consid-
ered COVID-19 high growth areas but also the period of 
time the cluster will last and how severe the dynamics of 
the cluster is. This can then be visualised in an interactive 
map for stakeholders as shown in Fig. 15. The colour code 
of the clusters visually displays the severity using the RI.

Emerging spatio-temporal hot-spot analysis is of cru-
cial importance for public health policy- and decision-
makers and can provide valuable information that would 
not be possible to achieve with other techniques, ena-
bling to capture specific clustering patterns in terms of 

particular districts and areas that would be otherwise 
classified as being at low risk for spreading COVID-19. 
Hot-spot analysis can complement classical epidemio-
logical and surveillance approaches, shedding light on 
COVID-19 spatio-temporal trends and the possible 
evolution of its trajectories. Furthermore, the hot-spot 
analysis enables easy visualization of data in a way that 
is accessible for stakeholders and helps them in the deci-
sion-making process.

Implementation of hot‑spot analysis 
into susceptible‑infected‑recovered‑death (SIRD) model
A problem encountered in modeling the COVID-
19 pandemic is that SIRD models generally function 
stochastically (random β dependent spread through 
susceptible population). However, pockets of cases 
developing usually in high density areas undergo inde-
pendent, rapid infection that does not fit into larger 
model. This micro-system cluster is referred to as a 
hot-spot and undergoes independent non-stochastic 
hot-spot dynamics. In order to classify a specific group 
of cases in an area as a hot-spot the cases must first be 

Fig. 13 Number of hot‑spot cases over time during the second wave. Comparison of hot‑spot and stochastic growth using number of cases per 
day
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grouped and their characteristics modeled, using each 
groupings characteristics to define a hot-spot cluster.

It therefore, follows that in order to produce informa-
tive predictions for governmental policy- and decision-
makers, such as estimate numbers of hospital beds, use 
of intensive care units (ICUs) wards and when the peak 
will occur, the hot-spot cluster cases must be extracted 
from the data the stochastic SIRD model is calibrated 
on. The model is then able to interpret the progression 
of COVID-19 without the inconsistencies incurred by 
the non-conforming hot-spot cases.

This is done by extracting the daily ratio of stochastic 
cumulative cases from the total cases in all clusters and 
applying this ratio to the recorded data before it is used 
to inform the model:

where Istoch is the stochastic active cases, Is is the active 
cases in stochastic clusters, Ihs is the active cases in hot-
spot clusters and Id is the active cases recorded.

Study replication considerations
In this study, unsupervised clustering is combined with 
an epidemiological analysis, in order to expose the spa-
tio-temporal virus dynamics within Gauteng Province. 
Although infections grouped within the same cluster do 
not necessarily share temporality or contact network, the 
methodology provides important insight into the spa-
tio-temporal distribution of cases within the area at an 

(8)Istoch =
Is

Is + Ihs
Id ,

Fig. 14 Second wave cumulative and emerging COVID‑19 hot‑spot clusters in Gauteng. Number of new clusters developing into hot‑spots (top). 
Total number of clusters defined as hot‑spots for the second wave in Gauteng (bottom)

Table 2 Summary of specifications of classified clusters

Hot‑spot 
classification

Cluster activity Risk index

If cluster can be 
defined as a hot‑spot 
or not

The time dependent 
progression of the 
cluster

The severity of infec‑
tion rate and scale of 
clusters
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improved granularity. As the methodology presented is 
data-driven, it can be applied to any location experienc-
ing an epidemic, if there is sufficient data. When imple-
menting this methodology, the number of clusters used is 
selected to provide the desired cluster granularity for the 
given area. The study can therefore be applied to any area 
large enough to have sufficient case data for analysis. The 
calibration of the hot-spot definitions must consider the 
generalized virus progression over the entire area as well 
as the socio-economic and political subtleties of the area. 
If the location of analysis has more comprehensive data 
available (such as socio-economic, movement and expo-
sure of infected), the method can be expanded to provide 
more complex and/or specific insight.

Conclusion
Hot-spot analysis represents an advanced statistical 
approach that can be effectively utilized for outbreak ana-
lytics and visualization. It can equip public health policy- 
and decision-makers with updated, real-time assessment 
of the pandemic trends and its future projected trajecto-
ries. Furthermore, it can complement classical epidemio-
logical surveys, leading to the identification of patterns 
that would be otherwise classified as low-risk ones. In 
conclusion, hot-spot analysis has been highly helpful in 
promptly recognizing high-risk clusters, and to adopt/
adjust proper public health measures. Since epidemics 

are situations which are highly changeable and constantly 
under flux, we can anticipate that hot-spot analysis can 
aid stakeholders in making informed, evidence-based and 
data-driven decisions, during epidemic waves and efforts 
such as vaccine roll-outs.
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