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Abstract 

Background: The COVID-19 pandemic remains a global public health concern. Advances in sequencing tech-
nologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of 
sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has 
been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including meth-
ods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional 
surveillance and management of the disease. In this study, we present a novel method for producing stable genomic 
clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous meth-
ods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, 
Canada.

Results: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering 
methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. 
Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data.

Conclusions: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. 
Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both 
genomic and epidemiological data should be used in combination.
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Background
The COVID-19 pandemic has had worldwide economic, 
social and health impacts unlike any infectious disease 
in recent history. First identified as an unknown cause 
of pneumonia in patients from Wuhan, China in late 
2019, the aetiological agent was quickly determined to 
be a novel Betacoronavirus, subsequently named severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[1–3]. Extensive global person-to-person transmission 
followed and on March 11, 2020 [4], the World Health 

Organization (WHO) declared COVID-19 a pandemic, 
with cases since reported in almost every country in the 
world. As of  10th March 2022, there have been over 450 
million cases and 6 million deaths associated with the 
disease worldwide [5].

The development of effective vaccines and regional 
containment strategies have allowed countries to miti-
gate the spread of SARS-CoV-2 and thereby reduce 
transmission, hospitalization, and death rates from 
COVID-19. Nevertheless, the threat posed by the disease 
is still a worldwide concern due to the emergence of Vari-
ants of Concern (VoCs) such as the Delta and Omicron 
variants that display increased transmissibility with lower 
vaccine effectiveness [6, 7], delayed global vaccination 
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deployment, vaccine hesitancy, and unequal access to 
vaccines and therapeutics.

We have seen an unparalleled effort in whole genome 
sequencing (WGS) of COVID-19 to identify new vari-
ants and mutations of concern. To date, there are over 
9 million sequences publicly available through the 
open-source GISAID initiative [8]. Utilising these data 
to develop novel and easy-to-implement tools to detect 
growing or emerging transmission clusters can help con-
trol the spread of the virus locally. We can use genomic 
similarity to identify linked cases with shared demog-
raphy or geography at a higher resolution than a shared 
lineage assignment or simply via contact tracing. Inspect-
ing clusters can reveal sources of common exposures or 
patterns of transmission through a population, which can 
be used to understand regional epidemiology and inform 
public health policy, such as implementing restrictions 
in certain settings with a high transmission risk. Practi-
cally, we have also seen that the SARS-CoV-2 lineage 
nomenclature, such as the widely used Pangolin system 
[9] has been dynamic through the pandemic and cannot 
provide sufficient resolution for epidemiological inves-
tigations. Thus, clustering sequences by genomic simi-
larity provides the resolution and stability necessary for 
public health applications over the course of a dynamic 
pandemic.

Phylogenetic trees are an effective tool for summa-
rizing evolutionary relationships among taxa, and tree 
reconstruction methods can be used to achieve realistic 
measures of genetic divergence. The information con-
tained within a phylogeny can be used to define groups 
of closely related sequences that may indicate recent 
transmission between cases, either through identify-
ing distinct clades on a tree or by using the pairwise 
patristic distance as a measure of divergence between 
tips. Non-phylogenetic clustering methods have been 
developed that use sequence similarity to predict clus-
ters (e.g.[10],), though these approaches can be slow as 
they have been developed to explore global alignments 
of genomes. Phylogenetic clustering has been applied 
in many virological analyses [11–13], as well as early in 
the COVID-19 pandemic to define putative transmis-
sion clusters in SARS-CoV-2 [14–16]. However, clus-
tering based solely on genetic variation may not be 
sufficient to effectively identify meaningful clusters in 
SARS-CoV-2 where there has been rapid spread of the 
virus with relatively low genetic diversity [17–19], as 
well as periods of lineage replacement with new VoCs 
also reducing regional genetic diversity in the virus 
[20]. Additionally, comprehensive sampling of ongoing 
transmission within a population can result in multi-
ple clusters that are linked genetically through ances-
tral samples. Defining clusters using a fixed genetic 

distance threshold may cause sequences to change 
cluster designation through time as more sequences are 
collected.

Here, we present a novel method for constructing 
SARS-CoV-2 genomic clusters, using the pairwise prob-
ability of clustering under a logit regression model, and 
linking cases under a given probability threshold. The 
logit model incorporates genetic relatedness through 
phylogenetic (patristic) distance and collection or symp-
tom onset date; this method also allows for the inclusion 
of other covariates of interest that may result in mean-
ingful clusters (e.g., contact data, exposure events). In 
contrast to previous clustering approaches that often 
rely solely on phylogenetic inference [21], clustering iso-
lates in this pairwise manner allows for greater cluster 
stability through time, as well as resolution by including 
epidemiological information without the need for time-
consuming manual investigation. Previous clustering 
designation of sequences can also be specified a priori to 
further improve cluster stability. This also allows cluster-
ing to be performed on subsampled datasets where pre-
viously clustered sequences have been removed for ease 
of analysis. We present a comparison of our approach 
to TreeCluster [21], an efficient tool for clustering 
sequences from tree-based distances alone using dif-
ferent clustering classifications, such as setting a maxi-
mum patristic distance within a cluster or a maximum 
pairwise distance between tree tips. Our new approach 
is provided as an R package, github.com/bensobkow-
iak/cov2clusters, for use within the research and public 
health community to investigate SARS-CoV-2 transmis-
sion dynamics.

Results
Sample description
Whole genome sequence data was obtained for 36,420 
SARS-CoV-2 samples collected between  15th March 
2020 and  13th August 2021 in BC, Canada. These data 
encompass sequences collected during the first, second 
and third ‘waves’ of the pandemic in the province, pre-
dominantly comprising the SARS-CoV-2 sub-lineages 
B.1.2 and B.1.438.1 (wave 2) initially before replacement 
with B.1.1.7 (Alpha) and P.1 (Gamma) (wave 3), which 
led to a rapid increase in cases (Fig.1A. The data also 
includes the beginning of a rise in cases in June 2021 
that would eventually lead to the fourth ‘wave’ in BC, 
largely driven by the Delta SARS-CoV-2 variant sub-
lineages B.1.617.2 and AY.25 (more recently denoted as 
AY.25.1), with the number of cases caused by this vari-
ant increasing in early May 2021 before becoming the 
principal variants in BC by August 2021 (Fig.1B). Lev-
els of genetic diversity within the SARS-CoV-2 samples 
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collected fluctuated over the study period, with very low 
diversity in the population observed during the periods 
of high B.1.1.7 (Alpha) and P.1 (Gamma) case numbers, 
and with the introduction of the Delta variants (Supple-
mentary figure S1).

Cluster results in BC SARS‑CoV‑2 data
We predicted clusters in the SARS-CoV-2 data from 
BC using our logit model, cov2clusters, at three differ-
ent pairwise probability thresholds for linking sequences 
in clusters, 0.7, 0.8, and 0.9. We compared the results 

Fig. 1 The cumulative number (A) and lineage proportion (B) of SARS-CoV-2 sequences per week. Lineages are differentiated by colour and major 
lineages present in the data are annotated
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of clustering to two clustering methods implemented 
using the TreeCluster functions ‘single_linkage’, which 
links cases by a maximum pairwise patristic distance 
threshold, and ‘max_clade’, which produces clusters with 
a maximum within-cluster patristic distance thresh-
old [21]. The full sequence data were separated into two 
large datasets to test these methods in periods with dif-
ferent levels of genomic diversity (Supplementary figure 
S1). These were defined as pre-Delta introduction wave 
(N = 19,617), which included all sequences collected 
before  6th May 2021, and Delta wave (N = 17,297), which 
included all sequences after this date, as well as 494 ran-
domly selected sequences collected before this date as a 
representative skeleton tree of past diversity.

Genomic clustering with cov2clusters (using the pair-
wise probability thresholds of 0.7 and 0.8) and TreeClus-
ter ‘single_linkage’ found fewer, larger clusters than both 
cov2clusters at the 0.9 threshold and TreeCluster ‘max_
clade’. This occurs both in the pre-Delta introduction 
and Delta wave data. cov2clusters at the 0.9 probability 
threshold found many small clusters and a high number 
of sequences assigned as non-clustered, indicating this 
threshold may over-cluster the data. Figures2 shows the 
phylogenetic trees produced by the pre-Delta introduc-
tion (Fig.2A) and Delta waves (Fig.2B) and the resulting 

cluster assignments, with the largest five clusters found 
by each approach shown in colours (cluster size range 
N = 194—4638 pre-Delta introduction, and cluster size 
range N = 181 – 4323 Delta wave), all sequences clustered 
in smaller clusters in grey, and non-clustered sequences 
in white. The largest clusters found using cov2clusters at 
the 0.7 and 0.8 probability thresholds were of similar size 
(N = 4452 – 4638 pre-Delta introduction, and N = 4250—
4323 Delta wave) though the number of clusters at the 0.7 
probability threshold was lower (567 vs 756 clusters pre-
Delta introduction, and 453 vs 591 clusters Delta wave), 
with most sequences of the same sub-lineage assigned to 
a single, large cluster (Table1).

Accuracy of clustering methods with epidemiologically 
informed clusters
The performance of cov2clusters for accurately assign-
ing SARS-CoV-2 sequences to seven epidemiologically 
supported clusters from BC was tested at three pairwise 
probability thresholds, 0.7, 0.8, and 0.9. These results 
were also compared to the accuracy of TreeCluster ‘max_
clade’ and ‘single_linkage’ approaches (Fig.3) by calcu-
lating the precision, recall and F1 score. The F1 score of 
cov2clusters at probability thresholds 0.8 and 0.9 were 
marginally higher than other methods (0.80 and 0.81 

Fig. 2 Maximum-likelihood phylogenies and clustering assignments of (A) pre-Delta introduction wave (N = 19,617) and (B) Delta wave 
(N = 17,297) sequences. Sequences in the largest five clusters found by each method are coloured, with those in the largest cluster in red, followed 
by green, blue, yellow, and pink. All other clustered sequences are coloured grey, and non-clustered sequences are in white
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respectively), though the all methods achieved relatively 
similar scores (F1 = 0.78—0.81).

Despite similar overall F1 scores, the precision and 
recall of each tested method was highly variable. Cov-
2clusters at probability thresholds 0.7 and 0.8, and Tree-
Cluster ‘single_linkage’ approaches achieved high recall 
scores (0.86 – 0.96), with a high number of sequences 
being placed into genomic clusters that corresponded 
to the epidemiologically supported clusters (Supple-
mentary Table S1). The precision of these methods was 

much lower (0.67 – 0.72) owing to the non-specificity of 
some of the clusters, with some epidemiologically sup-
ported clusters predicted as the same genomic cluster. 
Conversely, cov2clusters at the 0.9 probability threshold 
and TreeCluster ‘max_clade’ achieved perfect precision 
scores of 1 where all sequences in the same genomic clus-
ters corresponded to the same epidemiologically sup-
ported cluster. However, these methods had much lower 
recall (0.69 and 0.65 respectively). This was driven by 
the high number of false negatives where sequences in 

Table 1 Summary statistics of clusters identified in pre-Delta introduction sequences and post-Delta introduction sequences. Clusters 
were produced using cov2clusters at three pairwise probability thresholds (0.7, 0.8, and 0.9) and TreeCluster (‘max_clade’ and ‘single_
linkage’ methods)

Pre-Delta introduction (N = 19,617)

Clustering method cov2clusters 0.7 cov2clusters 0.8 cov2clusters 0.9 TreeCluster ‘max_clade’ TreeCluster ‘single_linkage’

No. clusters 567 756 1794 1060 962

Max. cluster size 4638 4452 960 372 3105

No. non- clustered 757 1124 3486 2038 1450

Post-Delta introduction (N = 17,297)

Clustering method cov2clusters 0.7 cov2clusters 0.8 cov2clusters 0.9 TreeCluster ‘max_clade’ TreeCluster ‘single_linkage’

No. clusters 453 591 1449 945 790

Max. cluster size 4323 4250 1416 770 3619

No. non- clustered 671 927 2683 606 1161

Fig. 3 Precision, recall and F1 scores for each tested clustering method. Clusters were predicted using cov2clusters at three pairwise probability 
thresholds (0.7, 0.8, and 0.9) and TreeCluster (‘max_clade’ and ‘single_linkage’ methods) and compared to seven epidemiologically well-supported 
clusters from British Columbia, Canada
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epidemiologically supported clusters were not placed in 
genomic clusters.

Cluster stability through time
The stability of the genomic clusters through time was 
assessed by running each method on the Delta wave data 
collected up to  11th June 2021, and then re-running the 
clustering, adding sequences collected each subsequent 
week until the end of the study period. Stability measures 
tested were 1) the proportion of sequences that moved 
from a cluster in the preceding week to non-clustered 
in the current week, 2) the number of clusters defined in 
the previous week that split in the current week (i.e., any 
instance where sequences that were in a single cluster 
in the previous week have moved to different clusters in 
the current week), and 3) the overall entropy score of the 
clusters found in the current week.

We found that the TreeCluster ‘max_clade’ method 
resulted in the highest proportion of sequences mov-
ing from clusters to become non-clustered in subse-
quent weeks (highest on  23rd July 2021 with 1.14% of 
sequences). TreeCluster ‘single_linkage’ resulted in lower 
numbers of sequences moving from clustered to non-
clustered (Fig.4A). All cov2clusters methods did not 
result in any sequences moving from clustered to non-
clustered. The number of cluster splits was also highest 
with TreeCluster ‘max_clade’, with 54 clusters splitting 
in the week ending  13th August 2021, followed by Tree-
Cluster ‘single_linkage’ with 9 clusters splitting in the 
week ending  23rd July 2021 (Fig.4B). Cluster entropy was 
observed at its lowest in cov2clusters at the 0.7 thresh-
old through every week of the tested period, followed 
by cov2clusters at the 0.8 threshold. cov2clusters at a 0.9 
threshold and TreeCluster ‘max_clade’ scored the highest 
entropy, reflecting the more even distribution of the data 
into smaller clusters (Fig.4C).

Discussion
In this study, we have presented a new method for 
genomic clustering of SARS-CoV-2 using pairwise prob-
abilities of shared cluster membership derived from a 
logit regression model based on sequence divergence 
and sample collection dates. This method can also read-
ily incorporate epidemiological data, such as geography, 
contact or shared exposure, to add further resolution to 
the predicted genomic clusters. We tested our approach 
using three pairwise probability thresholds (0.7, 0.8, and 
0.9) for linking sequences to form clusters and found that 
at probability threshold of 0.8 formed the most stable 
clusters in our clinical data from samples collected in BC, 
Canada. Comparing our method to other phylogenetic 
clustering tools, we found the accuracy of cov2clusters to 
equal to or higher than TreeCluster with the ‘max_clade’ 

and ‘single_linkage’ options. Our approach can incorpo-
rate past designations in time into the clustering pipe-
line, which produces more stable clustering through 
time. This result has particular significance for the util-
ity of this method in real-time public health surveillance, 
where sequencing datasets grow over time, and stability 
in cluster designations is beneficial for reporting and sur-
veillance. We have implemented our approach as a freely 
available R package.

We used patristic distance from phylogenetic trees 
as the measure for genetic divergence in our method 
to utilize the full information available in the sequence 
alignment, compared to genetic distance measures that, 
while correlated with patristic distance, may underesti-
mate pairwise divergence [22]. Phylogenetic uncertainty 
in SARS-CoV-2 trees, where many terminal branches 
are supported by low numbers of mutations, has been 
explored previously [23]. It was shown that variation in 
tree topology, which in turn will alter pairwise distances 
between tips, was driven by the sample set of sequences 
used to construct the tree that changes through time. 
While this will impact the stability of any method that 
uses patristic distance to inform clustering, we have 
shown that our approach reduces this instability in 
genomic clustering.

Large clusters of genetically similar sequences were 
common in our dataset. Indeed, given the high number 
of COVID-19 infections and relatively low genetic diver-
sity of SARS-CoV-2 in the province, it is expected that in 
settings with even moderate levels of sequencing, we are 
likely to capture sequences separated by few mutations. 
Therefore, large clusters will occur, with many identical 
or near-identical sequences and with ‘chaining’ of closely 
related sequences. In other words, with dense sampling 
of ongoing person-to-person transmission, and over a 
short timeframe, there may be a lack of well-separated 
clusters in datasets for any clustering method to uncover. 
This contrasts with some other viruses, such as HIV, that 
will produce structured phylogenies from which discrete 
clusters can be identified [22]. This in part due to HIV’s 
chronic nature (leaving longer time intervals between 
infections with a higher potential for intra-host genetic 
diversity and viral populations), as well as the fact that, in 
HIV, relatively small clusters are seeded by introductions 
from other jurisdictions. Here, when a large fraction of 
infections is sequenced, the time between infections 
is short, and considerable transmission is occurring 
within the sampling jurisdiction. Therefore, using only 
genomic divergence derived from a given phylogeny is 
unlikely to identify well-separated SARS-CoV-2 trans-
mission clusters. This was evidenced by the trade-off in 
precision and recall in the genomic clusters predicted 
in BC sequences from epidemiologically well-supported 
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Fig. 4 Cluster stability for each tested method assessed on SARS-CoV-2 sequences collected in British Columbia, Canada before  18th June 2021. 
Sequences collected each week until  13th August 2021 were added to the preceding week’s data. A The proportion of sequences becoming 
non-clustered when clustered the week previously, B the number of cluster splits, and C the clustering entropy
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clusters. Additional epidemiological data can be used to 
refine large clusters found using our genomic clustering 
approach. For example, including information such as 
common exposures and contact tracing data may divide 
large clusters into operational units with public health 
relevance. One limitation of our study is that we do not 
have exposure, contact or location information to explore 
this application.

Sequences belonging to a P.1 sublineage (P.1.14) form 
a single, large cluster (illustrated as the red cluster in the 
delta wave dataset in Fig.2), coinciding with a high num-
ber of low-diversity P.1 cases present in BC from April 
2021 onwards [24], where almost all P.1 samples were 
within 0–1 SNPs of another P.1 sequence. This phenom-
enon is also expected with the recent Omicron variant, 
where rapid spread has led to high numbers of low diver-
sity cases [25]. Increasing the probability threshold to 0.9 
(or conducting phylogenetic clustering with a smaller 
maximum clade divergence threshold) breaks up the 
cluster into smaller groups of identical or near-identical 
sequences, but this does not reflect genuine underlying 
clustering (Supplementary figure S2). In such circum-
stances, we recommend including additional metadata 
to refine clusters into genetically related groups with 
shared demography and epidemiology. Alternatively, our 
approach could be used as a surveillance tool focusing on 
a particular individuals or settings of interest, identify-
ing sequences that are linked to the focal individuals or 
exposure sites, moving outwards to a desired number of 
“rings”.

While COVID-19 remains at pandemic levels with high 
case numbers in many regions globally, it is anticipated 
that there will be a shift to endemicity characterized by 
persistent, lower levels of the disease interspersed with 
seasonal or occasional outbreaks [26]. In that context, it 
is likely that the viral population will have smaller and 
better-separated clusters. We suggest that the method 
presented here for clustering can be effectively utilized in 
both contexts.

Conclusions
Identifying meaningful, high-resolution clusters from 
SARS-CoV-2 genomic sequence data alone can be a chal-
lenge due to relatively low genetic diversity and high rates 
of localised transmission. Nevertheless, WGS data can be 
a useful tool to cluster individuals with similar genomic 
sequences to predict groups with shared transmission 
histories. Here we present a simple method for producing 
highly stable genomic clusters of SARS-CoV-2 sequences 
using phylogenetic inference and collection date to link 
cases for use in public health surveillance.

Methods
Sequence data and phylogenetic analysis
Positive SARS-CoV-2 samples collected in British 
Columbia (BC), Canada, between  18th March 2020 and 
 13th August 2021 underwent whole-genome sequenc-
ing at the BCCDC Public Health Laboratory. Sequencing 
sampling strategy changed over the course of the pan-
demic and increases with sequencing capacity at the lab. 
Sampling strategies included random sampling (ranging 
from 5–100% of cases at different periods) and targeted 
sampling (outbreaks and targeted populations such as 
travellers) [27]. Sequence data used in this study have 
been deposited in the GISAID database [8].

Nucleic acids were extracted using the MagMAX 
instrument from Thermofisher (AM1836) and amplified 
using the Freed primer scheme (1200 base pair ampli-
cons) detailed here [28]. Consensus sequences were gen-
erated using the Connor Laboratory pipeline (https:// 
github. com/ connor- lab/ ncov2 019- artic- nf ) with consen-
sus bases called at a frequency of 0.75 with a subsampling 
read count strategy. Consensus sequences were aligned 
and trimmed to Wuhan-Hu-1 reference sequence (Acces-
sion MN908947, Version MN908947.3) using MAFFT 
(v7.471) [29] prior to phylogenetic tree production. A 
specific fork of the ARTIC pipeline for processing SARS-
CoV-2 sequences was created to support the SARS-
CoV-2 sequencing efforts at the BCCDC Public Health 
Laboratory, located here: https:// github. com/ BCCDC- 
PHL/ ncov2 019- artic- nf. Sequences with no collection 
date or excess or ambiguous sites (> 15% missing calls) 
were removed from the analysis.

Phylogenetic analyses
A multiple sequence alignment of the full SARS-CoV-2 
genome was used to construct maximum-likelihood 
(M-L) phylogenetic trees with IQ-TREE (v.2.1.3) [30]. 
One sequence per individual was included for analysis, 
with the earliest sequence chosen where longitudinal 
samples were taken from the same disease episode. Opti-
mal nucleotide substitution models for the data were 
chosen using ModelFinder in IQ-TREE [31] and applied 
to each tree construction pipeline. For comparison to 
the proposed clustering approach, phylogenetic cluster-
ing was performed using TreeCluster (v.1.0.3) [21] using 
two thresholds, 1) a maximum divergence threshold 
within clusters of 4 ×  10–4 substitutions/genome (used 
previously for generating SARS-CoV-2 phylogenetic clus-
ters 14), and 2) a maximum pairwise divergence thresh-
old (among pairs in a cluster) of 5 ×  10–5 substitutions/
genome, equivalent to a SNP distance of between 1–2 
SNPs.

https://github.com/connor-lab/ncov2019-artic-nf
https://github.com/connor-lab/ncov2019-artic-nf
https://github.com/BCCDC-PHL/ncov2019-artic-nf
https://github.com/BCCDC-PHL/ncov2019-artic-nf
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Genomic clustering methodology
Genomic clusters were defined as networks of connected 
sequences (nodes) where the pairwise probability of clus-
tering was above a given threshold. The probability of 
clustering between two sequences was calculated using 
the logit model:

Coefficients (β) can be either manually chosen or 
estimated using the logistic regression on data with 
known clusters. d is the pairwise genetic divergence, 
calculated between all pairs of isolates by extracting 
patristic distances (the sum of branch lengths con-
necting two tips) on the phylogenetic tree, in units 
of substitutions/genome. t is a measure of difference 
in time between sequences, either the date of collec-
tion or symptom onset, and can be extracted from 
the associated metadata or inferred from a timed 
phylogeny. Additional covariates (n), such as contact 
data between hosts or shared exposure events, can be 
included to further resolve clusters. Pairwise trans-
mission probabilities calculated in previous cluster-
ing runs can be included in new analysis to allow for 
greater continuity in cluster designations, as well as 
permitting subsequent clustering runs to be run on 
subsampled datasets to increase speed and efficiency 
when clustering large numbers of sequences. The 
full R code is available at github.com/bensobkowiak/
cov2clusters.

We compared the results of our genomic clustering 
method at three pairwise probability thresholds of 0.7, 
0.8 and 0.9 to link sequences to the clusters obtained 
using TreeCluster ‘max_clade’ (where the maximum 
pairwise patristic distance threshold between any 
two sequences in a cluster was 4 ×  104 substitutions/
genome) and ‘single_linkage’ (where any two sequences 
up to a maximum patristic distance threshold of 5 ×  105 
substitutions/genome must be in the same cluster). 
Beta coefficients for the genomic clustering algo-
rithm of β0=3, β1=-1.9736 ×  10–4, and β2= 7.5 ×  10–2 
were chosen to only link sequences at the 0.7 prob-
ability threshold with a maximum genomic divergence 
equivalent to two SNPs when the time between col-
lection dates is low (less than 10  days). These values 
correspond to a pairwise probability of 0.95 between 
sequences with the same genomic sequence and col-
lected date, with a decrease in pairwise probability as 
the patristic distance and/or collection date difference 

P =
1

1+ e−z

z = β0 + βdxd + βtxt . . .βdxd

increases. Supplementary figure S3 shows the pairwise 
probabilities from logistic regression with these beta 
coefficients when varying the patristic distance (con-
verted to SNP distance by multiplying by the genome 
length) and difference in collection dates (in days) 
between sequences.

Clustering accuracy and stability measures
The clustering accuracy of each tested method was 
assessed using three measures for evaluating clus-
tering, the precision, recall and F1 score. These 
measures were calculated from sequences that were 
collected in seven epidemiologically well-supported 
clusters from the SARS-CoV-2 BC dataset (Supple-
mentary Table S1).

Precision is defined as:

Recall is defined as:

And the F1 score is calculated as:

Here, k is the number of clusters predicted by the clus-
tering method, s is the number of epidemiologically sup-
ported clusters, and aks is the total number of sequences 
belonging to the kth and sth clusters.

We assessed the stability of clusters through time 
by calculating three measures on the clusters pre-
dicted on the SARS-CoV-2 sequences collected in BC 
between  11th June 2021 and  13th August 2021. Phylo-
genetic tree construction and clustering was repeated 
each week, adding sequences that were collected in 
that week to the dataset. We calculated the proportion 
of sequences that moved from to non-clustered, the 
number of cluster splits, and the overall entropy score 
of the clusters, in each week after the first clustering 
analysis. Cluster entropy was defined using Shannon’s 
entropy as:

Here, H(X) is the overall clustering entropy and P is 
the probability of belonging in cluster xi . The lowest 
score of 0 occurs when all sequences are in a single clus-
ter and non-clustered sequences are not included in the 
calculation.

Precision =
�kmaxs{aks}

�k�saks

Recall =
�kmaxk{aks}

(�k�saks +U)

F1 =
Precision ∗ Recall

Precision+ Recall

H(X) = − P(xi) ∗ log2P(xi)
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