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Abstract
Various vaccines have been approved for use to combat COVID-19 that offer imperfect
immunity and could furthermore wane over time. We analyze the effect of vaccina-
tion in an SLIARS model with demography by adding a compartment for vaccinated
individuals and considering disease-induced death, imperfect and waning vaccination
protection as well as waning infections-acquired immunity.When analyzed as systems
of ordinary differential equations, themodel is proven to admit a backward bifurcation.
A continuous time Markov chain (CTMC) version of the model is simulated numer-
ically and compared to the results of branching process approximations. While the
CTMCmodel detects the presence of the backward bifurcation, the branching process
approximation does not. The special case of an SVIRS model is shown to have the
same properties.

Keywords Epidemic model · Waning immunity · Backward bifurcation · Continuous
time Markov chain · Branching process approximation

Mathematics Subject Classification 92D30 · 60J28 · 60J85 · 34C23

1 Introduction

According to the World Health Organization World Health Organization (2021b),
at the time of writing, the total number of confirmed cases of Coronavirus Disease
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(COVID-19) has exceeded 170 million, about a year and a half after the disease and
the virus that causes it (SARS-CoV-2) were officially named. Among the confirmed
cases are more than 3.7 million deaths World Health Organization (2021b).

Of particular importance in the fight against COVID-19 was the development of
vaccines. It is a testament to the amount of effort that went into this endeavour that,
barely one year after the start of the crisis, at least 7 different vaccines have been admin-
istered World Health Organization (2021a). Three vaccines, mRNA-based vaccines
from Pfizer-Biontech and Moderna along with a viral vector vaccine from Janssen,
have been granted emergency use status in the United States United States Centers for
Disease Control and Prevention (2021). Worldwide, several other vaccines are avail-
able at the time of writing: Astra-Zeneca, Sputnik, Sinovacc, Covishield, according
to World Health Organization (2021a). All these vaccines have different characteris-
tics, which are best summarized using three features: the number of doses required to
generate immunity, the level and type of immunity provided and the duration of the
protection.

While the number of doses is an important feature, for COVID-19, it has this far
generated specific issues mostly at the time of vaccine roll-out. The second charac-
teristic of a vaccine is its efficacy: a vaccine does not always confer full immunity
to the disease, in which case is is called imperfect. Such vaccine imperfections have
different sources, but in with COVID-19, one of the main reason is the emergence
of SARS-CoV-2 variants less sensitive to some of the vaccines. Finally, it is possible
that the immunity provided by the vaccine does not last: the vaccine is said to wane.
Clearly, the three characteristics are intimately linked: vaccines against some diseases
require booster shots because the protection they afford is known to wane; efficacy
may diminish because a full dose regimen is not followed, etc.

Vaccination for COVID-19 is presenting heretofore unseen challenges. It is the first
time in the history of vaccination that the cycle from development to global worldwide
roll-out occurs over such a short time period. Vaccination against poliomyelitis and
smallpox were on the same scale, but much evidence had been collected about efficacy
and waning over the years. Vaccination against the 2009 pandemic H1N1 influenza
strain became possible very soon but a lot was already known about influenza vaccines
because of annual vaccination campaigns.

Another facet of the fight against COVID-19 has been the unprecedented reliance on
mathematicalmodels to study critical scientific questions about the dynamics of spread
of the disease and thereby help guide public policy. Even in 2020, there were quite
a lot of mathematical models published to study COVID-19. See, e.g., Mohamadou
et al. (2020), Ogden et al. (2020) and the references therein. This has only increased
since; see, e.g., the extensive review in Cao and Liu (2021), Xiang et al. (2021) for
models regarding public health interventions or Arino (2022) for models related to
the spatial spread of the disease. It is interesting to note that many of the mathe-
matical models used to study SARS-CoV-2 and COVID-19 have their roots in the
classical Susceptible-Infected-Removed (SIR) model of Kermack and McKendrick
(1927). Some authors have adapted the classical SIR structure; see, e.g., Cooper et al.
(2020), Nguemdjo et al. (2020). Others have extended the model to include a latent or
exposed compartment, such as Chen et al. (2020), Yang and Wang (2020), while oth-
ers have gone further to include both latent/exposed and asymptomatic compartments,
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as in Arino et al. (2020), Arino and Portet (2020), Basnarkov (2021), Li et al. (May
2020), Rădulescu et al. (2020), Tsay et al. (2020). We refer to the general class of
models that extend the classical SIR model structure to include latent/exposed (L) and
asymptomatic (A) compartments as SLIAR-type models. SLIAR-type models were
first developed to study H5N1 influenza by Arino et al. (2006), Longini et al. (2005)
combining characteristics of models for SARS-CoV suggested by Brauer (2006). Of
importance to justify our work here is that most models have made the (completely
justified) assumption that considering the vital dynamics (demography) of the popu-
lation was not required. However, as the crisis drags on and there is more and more
talk about vaccination becoming recurrent, the validity of this hypothesis is coming
under question.

This is all the more important that, because of uncertainties about COVID-19 vac-
cine characteristics, the use of mathematical modeling to investigate the potential
effects of vaccines is a necessity. However, it has been known for some time that in
models with demography, the compounding of imperfection and waning of the protec-
tion impacts the dynamics of the spread of the disease, sometimes leading to so-called
backward bifurcation situations as in Hadeler and van den Driessche (1997), which
were first exhibited as a result of vaccination in an SIS model in Kribs-Zaleta and
Velasco-Hernández (2000) and in an SIRS model in Arino et al. (2003). In a back-
ward bifurcation scenario, there can be multiple endemic equilibria, often occurring
in subcritical situations, i.e., when the reproduction number is less than unity. This
greatly complicates the mathematical analysis; Arino et al. (2003) is the only work to
our knowledge where global conclusions are drawn in a backward bifurcation region.
The phenomenon of backward bifurcations has been shown for a variety of epidemic
models, see Villavicencio-Pulido et al. (2015). The existence of a backward bifur-
cation also has important implications more generally for the dynamics of disease
spread and, ultimately, control, since in a backward bifurcation region, solutions are
initial-condition dependent. Therefore, the first question we investigate is the exis-
tence of a backward bifurcation in a deterministic SLIARS model with demography
and vaccination, i.e., a deterministic SVLIARS model.

Our second question concerns the link between the bistable behavior of a deter-
ministic SVLIARS and its related continuous time Markov chain analogue. Indeed,
another important teaching of the COVID-19 crisis is the importance of case impor-
tations (or introductions in the ecological lingo) in the global spread of infectious
diseases. Highlighted in Arino et al. (2020), Arino et al. (2021), this phenomenon
is best described using a stochastic model. While the effect of importations was of
course known before, the amount of scrutiny and the wide availability of data had
made studying this aspect possible. In the context of COVID-19 and more generally,
the emergence or re-emergence of a disease, case importations and the initial spread
in communities involve a relatively small number of infectious individuals, leading
to disease dynamics driven by randomness. Randomness is also present when there
is a degree of variability associated with the mechanisms driving the disease dynam-
ics such as transmission or recovery or if environmental randomness affects disease
outcomes. Stochastic epidemic models date back to Bernoulli (1760) and have been
studied in earnest at least since Kermack and McKendrick (1927). An important fea-
ture of these models is that they allow to compute the probability of a minor epidemic
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and its complement, the probability of a major epidemic. These probabilities were cal-
culated for continuous timeMarkov chain (CTMC) SI, SIRmodels byWhittle (1955).
CTMCand stochastic differential equation (SDE)models related to deterministicmod-
els exhibiting backward bifurcation have been shown to detect bistability Allen and
van den Driessche (2006). Relying on knowledge of the bifurcation structure of the
corresponding ODE model, we will investigate the capacity to detect bistability in the
SVLIARS CTMC.

When direct analysis of CTMC models is intractable, it is necessary to approxi-
mate the probabilities of minor and major epidemics. One common approximation
technique is to construct and analyze a branching process model. Branching process
approximation of the probability of a minor epidemic has been used to great effect
Allen and Bokil (2012), Allen and van den Driessche (2013), Edholm et al. (2018) and
has been related to the basic reproduction number of a corresponding deterministic
model Allen and van den Driessche (2013). However, this technique is a lineariza-
tion and has been shown to be less successful for highly nonlinear models and away
from the disease-free equilibrium inMilliken (2017). Another way to approximate the
probability of a minor epidemic in a CTMC model is to make calculations from an
ensemble of sample paths simulated via Gillespie algorithm. This brings us to the third
question considered in this work, namely the consideration of whether the CTMC and
the BP approximation are equally able to detect a backward bifurcation.

To summarize, in thisworkwe investigate the dynamical behavior of CTMCmodels
in the presence of a backward bifurcation and whether this behavior can be detected
using branching process approximation techniques. To this end, we formulate an ODE
SLIAR-type model with vital dynamics that includes imperfect vaccination and wan-
ing immunity and establish conditions for the existence of a backward bifurcation in
a biologically relevant parameter regime. A related continuous time Markov chain
(CTMC) model is then presented, and branching process approximation and simula-
tion via the Gillespie algorithm are used to approximate the probability of a minor
epidemic. By way of example, we show that branching process approximation does
not detect the change in dynamics in the CTMC model associated to the backward
bifurcation. In an appendix, we consider the same properties in the special case of an
SVIRS model.

2 The deterministic SVLIARSmodel

2.1 Model formulation

The model is an SLIAR-type model to which both demography and vaccination are
added, i.e., essentially a cross between the SVIRS model of Arino et al. (2003) and
the SLIARS model of Arino et al. (2006). We interpret the R compartment here as
containing individuals who are immune (potentially for a limited time) to the disease
because of disease-acquired immunity, rather than as removed individuals as is often
done in SLIAR-type models. See Table 1 for a list of state variables used in the model
and Table 2 for a list of parameters. The flow diagram of the system takes the form
shown Fig. 1.
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Table 1 Description of model variables

Variable Description

S Number of susceptible individuals

V Number of individuals with vaccine induced partial immunity

L Number of latently infected individuals

I Number of symptomatic infected individuals

A Number of asymptomatic infected individuals

R Number of individuals with disease induced immunity

Table 2 Description of model parameters

Parameter Description

Demography

B Natural birth rate (set to dN0)

d Natural mortality rate

Disease characteristics

β Rate of transmission

η Modification of transmission for asymptomatics

π Proportion of asymptomatic cases

ε Rate of transition from latency to infectious stage

γ Rate of recovery

ωr Rate of waning of disease induced immunity

μ Disease induced mortality rate

Vaccination

p Proportion of newborns vaccinated

e Rate of vaccination of adults

σ Vaccine efficacy

ωv Rate of waning of vaccine induced immunity

Fig. 1 Flow diagram of the SVLIARS model (1). Demography flows are shown using dashed lines
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Themodel has flow diagram shown in Fig. 1 and incorporates imperfect andwaning
vaccine immunity as well as waning disease-induced immunity.While it lasts, disease-
induced immunity is perfect, contrary to the vaccine-induced one. Disease induced
mortality is assumed to only occur for symptomatic infected individuals.

Ṡ = (1 − p)B + ωvV + ωr R − βS(I + ηA) − (e + d)S, (1a)

V̇ = pB + eS − (1 − σ)βV (I + ηA) − (ωv + d)V , (1b)

L̇ = β(S + (1 − σ)V )(I + ηA) − (ε + d)L, (1c)

İ = (1 − π)εL − (γ + μ + d)I , (1d)

Ȧ = πεL − (γ + d)A, (1e)

Ṙ = γ (A + I ) − (ωr + d)R. (1f)

System (1) is considered with nonnegative initial conditions. To avoid trivial solu-
tions, it is generally assumed that L(0) + I (0) + A(0) > 0.

2.2 Preliminary analysis of the SVLIARSmodel

Before proceeding further, let us briefly consider properties of model (1) without
vaccination, i.e., (1) without equation (1b) and with p = e = ωv = 0. This system
has disease-free equilibrium (E0) S̄0 = B/d and using the same method as used later,
one finds the basic reproduction number

R0 = β
ε

ε + d

(
1 − π

γ + μ + d
+ ηπ

γ + d

)
S̄0. (2)

This quantity is useful to understand the effect of vaccination. We now turn to the
system with vaccination (1).

Proposition 1 The disease-free equilibrium of system (1) is

E0 = (S0, V0, 0, 0, 0, 0),

where S0 and V0 are given by

S0 = (1 − p)d + ωv

e + ωv + d

B

d
and V0 = pd + e

e + ωv + d

B

d
. (3)

Proof Suppose there is no disease, i.e., L = I = A = 0. Then from (1f), R = 0.
So at a disease free equilibrium, L = I = A = R = 0. Now consider the positively
invariant subsystem of (1) without disease given by

(
Ṡ
V̇

)
=

(−(e + d) ωv

e −(ωv + d)

)(
S
V

)
+

(
(1 − p)B

pB

)
. (4)
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It follows that the E0 is given by

(
S0
V0

)
= 1

d(e + ωv + d)

(
ωv + d ωv

e e + d

) (
(1 − p)B

pB

)

= B

d

1

e + ωv + d

(
(1 − p)d + ωv

pd + e

)
,

i.e., the expression (3). ��
The disease-free equilibrium allows us to define a quantity useful in practical appli-

cations, vaccine coverage. The situation of COVID-19 is of course different, since
there was no pre-existing vaccination coverage, but having access to this quantity is
nonetheless helpful for simulations as it can be used to set parameters. Vaccine cover-
age is the fraction (typically expressed as a percentage) of the population vaccinated,
i.e., vc = V (t)/N . Vaccine coverage can be evaluated at any point in state space,
for instance at endemic equilibria, although a closed-form solution is rarely obtained.
When the system is at the disease-free equilibrium, though, the following expression
holds, in which the dependence on E0 is indicated:

vc(E0) := V0
S0 + V0

= pd + e

e + ωv + d
. (5)

This expression also provides a useful form of the nonzero components of the DFE as

S0 = (1 − vc(E0))S̄0 and V0 = vc(E0)S̄0. (6)

To continue the analysis, it is useful to define the combination parameter

λ = βε
(γ + μ + d)ηπ + (1 − π)(γ + d)

(γ + d)(γ + μ + d)
> 0. (7)

Using λ, (2) takes the form

R0 = λ

ε + d
S̄0.

Theorem 1 The basic vaccination reproduction number for system (1) is given by

Rv = λ

ε + d
(S0 + (1 − σ)V0), (8)

where S0 and V0 are given by (3). IfRv < 1, then E0 (3) of (1) is locally asymptotically
stable, while it is unstable ifRv > 1.

Proof Let us use the method of van den Driessche and Watmough (2002). Infected
compartments are L , I and A (presented in that order) and the matrices F and V
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obtained by taking the Fréchet derivatives of the subsystem in the infected variables
x written as x ′ = F − V and evaluating at E0 take the form

F =
⎡
⎣0 β(S0 + (1 − σ)V0) βη(S0 + (1 − σ)V0)
0 0 0
0 0 0

⎤
⎦ ,

and

V =
⎡
⎣ ε + d 0 0

−(1 − π)ε γ + μ + d 0
−πε 0 γ + d

⎤
⎦ .

Computing the dominant eigenvalue of FV−1 gives (8). It is straightforward to show
that conditions for applying van den Driessche and Watmough (2002, Theorem 2) are
satisfied, giving local asymptotic stability of E0 when Rv < 1 and instability when
Rv > 1. ��

Remark that S0 + (1 − σ)V0 ≤ S0 + V0 = S̄0, with equality when σ = 0, i.e.,
when vaccine efficacy is zero. This implies that Rv ≤ R0, the inequality being strict
unless σ = 0. Thus, vaccination always lowers the reproduction number. Actually,
the following relationship links R0 as given by (2) and Rv for the full model (1):

Rv = R0
(1 − σ)e + ωv + d − dpσ

e + ωv + d
.

Proposition 2 System (1) admits endemic equilibria according to the following cases:

(i) A unique positive endemic equilibrium if Rv > 1 or Rv < 1, a1 > 0 and
a21 − 4a0a2 = 0;

(ii) Two positive endemic equilibria ifRv < 1, a1 > 0 and a21 − 4a0a2 > 0;
(iii) Zero positive equilibria otherwise, and in particular when R0 < 1.

Proof Write (1) as
.
x = f(x), where x = (S, V , L, I , A, R)T . Solving the nonlinear

system of equations f(x) = 0, we find that, at a positive equilibrium, each of the
components of x can be written as functions of the equilibrium value of L , itself the
root of the quadratic polynomial

P(L) = a0 + a1L + a2L
2, (9)

where

a0 = d(ε + d)(e + ωv + d)(Rv − 1), (10a)
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a1 = λ2(1 − σ)B

+ λ((1 − σ)e + ωv + d)

(
ωrγ ε(γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
− (ε + d)

)

− λ(1 − σ)d(ε + d), (10b)

a2 = λ2(1 − σ)

(
ωrγ ε(γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
− (ε + d)

)
≤ 0. (10c)

Before considering endemic equilibria of the full system, let us focus on roots of (9).
Since σ < 1,

sgn(a2) = sgn

(
ωrγ ε(γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
− (ε + d)

)
.

Since π ≤ 1, it follows that

ωrγ ε(γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
− (ε + d) ≤ − εd(ωr + γ + d)

(γ + d)(ωr + d)
− d < 0. (11)

Therefore, a2 < 0 (unless when σ = 1, in which case a2 = 0). Clearly,

sgn(a0) = sgn(Rv − 1). (12)

Note that a1 > 0 is equivalent to

(1 − σ)d(ε + d)

(1 − σ)e + ωv + d
(R0−1) > ε+d− ωrγ ε(γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
= −a2

λ2(1 − σ)
,

(13)
whereR0 is given in (2) and the right equality only holds when σ < 1; recall that a2 =
0 when σ = 1. Thus, when σ < 1,R0 < 1 �⇒ a1 < 0, since−a2/(λ2(1−σ)) > 0.
SinceRv ≤ R0, this implies in turn that a0 < 1 whenR0 < 1, so by Descartes’ Rule
of Signs, there are no positive equilibria when R0 < 1 and σ < 1. The case σ = 1
is discussed at the end of Section 2.2 and shown to preclude existence of positive
equilibria; thus, there are no positive equilibria whenever R0 < 1.

Our next conclusion follows readily from the Rule of Signs of Descartes: regardless
of the sign of a1, if a0 > 0, i.e., if Rv > 1, then there is a single positive root of (9).
So now assume Rv < 1, i.e., a0 < 0. Using the Rule of Signs of Descartes again, if
a1 < 0 then (9) has no positive root.

So there remains the case where Rv < 1 and a1 > 0 to consider, where the Rule
of Signs provides the unsatisfactory answer that there are either two (potentially with
multiplicity 2) or zero positive roots to (9). Using theRule of Signs on P(−L) indicates
that there are no negative roots of (9) when Rv < 1 and a1 > 0. As a consequence,
the situation is fully determined by the discriminant a21 − 4a0a2: if it is positive, there
are two distinct positive roots of (9); if it is zero, there is a single (double) root; and
if it is negative, there are no real roots.
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Putting all this together gives the conditions in the result. Now return to the equi-
librium for the whole system (1), expressed as a function of L as

S(L) = ε + d

λ
− (1 − σ)V (L), (14a)

V (L) = λBp + e(ε + d)

λ((1 − σ)λL + (1 − σ)e + ωv + d)
, (14b)

I (L) = (1 − π)ε

γ + μ + d
L, (14c)

A(L) = πε

γ + d
L, (14d)

R(L) = εγ

ωr + d

(
1 − π

γ + μ + d
+ π

γ + d

)
L. (14e)

The components I (L), A(L) and R(L) are positive scalar multiples of L . Further-
more, V (L) > 0 for all L ≥ 0 and when the equilibrium value of L is positive, L̇ = 0
implies that (S(L) + (1 − σ)V (L)) > 0 for all σ ∈ [0, 1], implying in turn that
S(L) > 0 for all L ≥ 0. V (L) is a monotone decreasing function of L , so given a
value of L , V (L) and S(L) take on unique positive values. Thus, if L is a positive
root of (9), then it is the L component of a positive endemic equilibrium with other
components given by (14). ��

When the root of (9) is unique, we denote it L∗, whereas when there are two
distinct positive roots, we denote L∗ and L∗ these values, with the convention that
L∗ < L∗. The resulting endemic equilibria obtained by using (14) are denoted E∗ and
E∗. From the properties of (14), all components of E∗ are larger than those of E∗,
except V∗ > V ∗.

Remark that the second condition in Proposition 2(i) defines the valueRcrit ofRv

at which the saddle node bifurcation seen in the left part of Fig. 2 takes place; see the
discussion in Section 2.3.

As a function of the transmission rate parameter β, the basic vaccine reproduction
numberRv(β) is monotone and there exists unique β∗ such thatRv(β

∗) = 1. Solving
Rv = 1 for β yields

β∗ = (ε + d)(γ + d)(γ + μ + d)

ε
[
(γ + ηπμ + d) + π(η − 1)(γ + d)

]
(S0 + (1 − σ)V0)

. (15)

This is useful in simulations, as values of Rv are easier to grasp than those of β.
At this point, Proposition 2 tells us of situations where multiple endemic equilib-

ria exist, so-called backward bifurcation situations, but says nothing of the stability
properties of these equilibria. This is investigated (close toRv = 1) in Section 2.3.

Before doing so, though, it is worth briefly investigating particular cases, to check
that the model behaves in a way that is similar to existing models exhibiting backward
bifurcations. Of particular interest is the situation that prevails when the vaccine is
fully efficacious (σ = 1), or not efficacious at all (σ = 0). These situations should
preclude the existence of multiple endemic equilibria. Suppose σ = 1. Then in (9),
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a2 = 0 so P(L) has at most one positive root and there cannot exist multiple endemic
equilibria. Suppose now that σ = 0. Then Rv = R0, so that Rv < 1 ⇐⇒ R0 < 1,
implying there can be no endemic equilibria when Rv < 1.

2.3 Existence of a backward bifurcation

The existence of multiple non-trivial equilibria when Rv < 1 given in Proposition
2 suggests that the transcritical bifurcation at the disease-free equilibrium can be
subcritical. This phenomenon is more commonly referred to as a backward bifurcation
Hadeler and van den Driessche (1997) and has important implications for control and
ultimate eradication of the disease.

Recovered individuals develop a degree of protection from reinfection in the form
of (possibly temporary) natural immunity as a result of their bodies’ own immune
response Lumley et al. (2021). One goal of vaccination campaigns is to further increase
the proportion of protected individuals in the population by generating a vaccine-
induced immune response in individuals with no immunity or weak immunity. This
provides vaccinated individuals with protection against infection but also can have a
population-level effect, the so-called herd immunity. The latter occurswhen a sufficient
proportion of the population becomes immune, implying that infected individuals
make most of their contacts with immune individuals, thereby reducing the risk of
disease spread to the point that the remaining susceptible individuals are indirectly
protected Desai and Majumder (2020). In an ideal setting, once herd immunity is
achieved, the number of cases declines to extinction or near extinction. In reality, the
possibility of reemergence of the disease remains an ever-present threat.

In mathematical models, it is often the case that the transcritical bifurcation at
R0 = 1 (or, in the case of models with vaccination, at Rv = 1) is supercritical.
In these models, the disease-free equilibrium can typically be shown to be globally
asymptotically stable when the basic (vaccine) reproduction number is less than one.
Therefore, vaccination campaigns are often designed with the reproduction number
in mind, with the herd immunity threshold given by Aschwanden (2020)

1 − 1

R0
. (16)

The effective reproduction number is the average number of new cases generated by
a single infectious case in a population consisting of a combination of susceptible
and non-susceptible individuals. The effective reproduction number is related to the
basic reproduction number, but evaluated away from the disease-free equilibrium. The
presence of a backward bifurcation implies that the effective reproduction number
has to be reduced further, below a constant Rcrit < 1. In this section, we give an
analytical proof of the existence of a backward bifurcation and illustrate it numerically
for biologically reasonable parameters.

For convenience, write the state variable vector (S, V , L, I , A, R)T as xT =
(x1, x2, x3, x4, x5, x6). Then system (1) can be written

.
x = f(x). At each pair (x, β),

we can calculate the Jacobian matrix Df(x, β). Writing x∗
1 = S0 and x∗

2 = V0, we
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have ET
0 = x∗T = (x∗

1 , x
∗
2 , 0, 0, 0, 0, 0) and the Jacobian matrix evaluated at the

disease-free equilibrium can be written Df(x∗, β). The following Lemma is the result
of direct calculation.

Lemma 1 At β = β∗, the Jacobian matrix Df(x∗, β∗) admits a simple zero eigen-
value with left eigenvector v = (v1, v2, v3, v4, v5, v6) and right eigenvector wT =
(w1, w2, w3, w4, w5, w6) given by

v =
(
0, 0, 1,

β∗(x∗
1 + (1 − σ)x∗

2 )

γ + μ + d
,
β∗η(x∗

1 + (1 − σ)x∗
2 )

γ + d
, 0

)
; and (17)

w1 = ωv + d

e
w2 + (1 − σ)λx∗

2

e
w3,

w2 = − e

d(e + ωv + d)

[
(ε + d) + d

e
λ(1 − σ)x∗

2 − εγωr (γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)

]
w3,

w4 = (1 − π)ε

γ + μ + d
w3,

w5 = πε

γ + d
w3,

w6 = γ

ωr + d
(w4 + w5) = λγ

β(ωr + d)
w3, (18)

where w3 is free.

Remark 1 Note that w2 < 0 for w3 > 0. This follows from the fact that

ε + d− εγωr (γ + πμ + d)

(ωr + d)(γ + d)(γ + μ + d)
>

(ε + d)(ωr + d)(γ + d) − εγωr

(ωr + d)(γ + d)(γ + μ + d)

= d(γωr + (ε + d)(ωr + γ + d))

(ωr + d)(γ + d)
> 0.

(19)

For the purpose of the proof of the backward bifurcation, define the following
hypothesis associated to the existence of two positive equilibria:

σvc(E0)
(1 − σ)d(ε + d)

(1 − σ)e + ωv + d
R0 > ε + d − εγωr (γ + πμ + d)

(γ + d)(γ + μ + d)(ωr + d)
, (H1)

where R0 is given by (36), E0 is the disease-free equilibrium and vc(E0) is given by
(5).

We can now proceed with establishing the existence of the backward bifurcation
analytically.

Theorem 2 System (1) undergoes a backward bifurcation at E0 andRv = 1whenever
condition (H1) holds.

Proof Choose the bifurcation parameter β. Then Rv = Rv(β) can be viewed as a
function of β with Rv(β

∗)=1. By Lemma 1, at β = β∗, J |E0 = Dx(E0, β
∗) admits

a simple zero eigenvalue with associated eigenvectors v andw given in equations (17)
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and (18), respectively. Following Castillo-Chavez and Song (2004, Theorem 4.1), we
calculate the bifurcation parameters

a =
6∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(E0, β

∗); and (20)

b =
6∑

k,i=1

vkwi
∂2 fk
∂xi∂β

(E0, β
∗). (21)

Let the free component of w, w3 = 1. From the Lemma, we have vk = 0 for k =
1, 2, 6. Thus, we can restrict ourselves to themixed partials with respect to f3, f4, f5.
Upon inspection we find that the only non-zero mixed partials are

∂2 f3
∂x1∂x4

= β; ∂2 f3
∂x1∂x5

= βη; ∂2 f3
∂x2∂x4

= β(1 − σ); ∂2 f3
∂x2∂x5

= βη(1 − σ).

Applying this to (20), along with the fact that v3 = 1 and due to Clairaut’s Theorem,

a = 2(β∗w4 + β∗ηw5)(w1 + (1 − σ)w2).

Since β∗w4 + β∗w5 = λ|β=β∗ > 0,

a = 2λ|β=β∗(w1 + (1 − σ)w2), (22)

and
sgn(a) = sgn(w1 + (1 − σ)w2). (23)

Now consider b. Among f3, f4, f5, only f3 exhibits a nonzero derivative with

respect to β. The non-zero partials ∂2 f3
∂β∂xi

(E0, β
∗) are

∂2 f3
∂β∂x4

(E0, β
∗) = (x∗

1 + (1 − σ)x∗
2 ;

∂2 f3
∂β∂x5

(E0, β
∗) = η(x∗

1 + (1 − σ)x∗
2 ).

Hence,

b = λ

β
(x∗

1 + (1 − σ)x∗
2 ) > 0, (24)

As noted in Remark 1, w2 < 0 and |w2| = −w2 when w3 > 0. Thus, a > 0 if and
only if

(1 − σ)λx∗
2

e
>

(
ωv + d

e
+ (1 − σ)

)
(−w2), (25)

which is equivalent to hypothesis (H1). ��
Note that van den Driessche and Watmough (2002, Theorem 4) could also have

been used to obtain this result.
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Fig. 2 (a) Subcritical (e = 0.05) and (b) supercritical (e = 0.15) transcritical bifurcations at Rv = 1. Rv

varies as a function of β. N is the population size at the disease-free equilibrium. All other parameters can
be found in Table 7 Appendix A

Remark 2 By (3), the disease-free equilibrium number of susceptible and vaccinated
individuals is a function of e, the vaccination rate of adults. It follows from (5) that the
vaccination coverage is also a function of e. Since the disease-free equilibrium, and
therefore the vaccination coverage, are independent of β, the vaccination coverage is
constant for each graph depicted in Fig. 2. The vaccine coverage, vc(E0), is monotone
increasing in e. However, the right hand side of hypothesis (H1) is a non-monotone
function of e.

Assuming that parameters other than e and β are as in Table 7 in Appendix A, we
find that the backward bifurcation exists ((H1) is true) for e ∈ (3.21 × 10−4, 0.107).
Therefore, the backward bifurcation exists for a wide range of vaccine coverage from
approximately 35.4% to approximately 99.5%.

Remark 3 The existence of a backward bifurcation corresponds to a region of bista-
bility for Rv < 1, i.e., existence of two positive endemic equilibria described in
Proposition 2 (i i). As Rv decreases, the nullclines corresponding to these equilibria
come together at the vertex of the parabola (9). As seen in the graph on the left of
Fig. 2, the vertex is also the point at which attractive and repulsive branches of equilib-
ria collide, suggesting the point is a saddle-node bifurcation. We refer to the value of
Rv that corresponds to the vertex (or, equivalently, to this bifurcation point) asRcrit.

3 The stochastic SVLIARSmodel

We now consider a stochastic model in the form of a continuous time Markov chain
which is related to the deterministic SVLIARSmodel (1). Informed by that model, we
construct the CTMC,Xt = (S(t), V (t), L(t), I (t), A(t), R(t)), with the infinitesimal
transition probability to state j from state i ,

pi, j (�t) = P{X(t + �t) = j |X(t) = i} = ρ(i, j)�t + o(�t), (26)
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Table 3 State transitions and rates for the CTMC SVLIARS model

Description Transition i �→ j Rate ρ(i, j)

Birth of S (S, V , L, I , A, R) �→ (S + 1, V , L, I , A, R) B(1 − p)

Waning of V (S, V , L, I , A, R) �→ (S + 1, V − 1, L, I , A, R) ωvV

Waning of R (S, V , L, I , A, R) �→ (S + 1, V , L, I , A, R − 1) ωr R

Vaccination of S (S, V , L, I , A, R) �→ (S − 1, V + 1, L, I , A, R) eS

I infects S (S, V , L, I , A, R) �→ (S − 1, V , L + 1, I , A, R) βSI

A infects S (S, V , L, I , A, R) �→ (S − 1, V , L + 1, I , A, R) βηSA

Natural death S (S, V , L, I , A, R) �→ (S − 1, V , L, I , A, R) dS

Birth of V (S, V , L, I , A, R) �→ (S, V + 1, L, I , A, R) Bp

I infects V (S, V , L, I , A, R) �→ (S, V − 1, L + 1, I , A, R) (1 − σ)βV I

A infects V (S, V , L, I , A, R) �→ (S, V − 1, L + 1, I , A, R) (1 − σ)βηV A

Natural death V (S, V , L, I , A, R) �→ (S, V − 1, L, I , A, R) dV

Progress to I (S, V , L, I , A, R) �→ (S, V , L − 1, I + 1, A, R) (1 − π)εL

Progress to A (S, V , L, I , A, R) �→ (S, V , L − 1, I , A + 1, R) πεL

Natural death L (S, V , L, I , A, R) �→ (S, V , L − 1, I , A, R) dL

Recovery of I (S, V , L, I , A, R) �→ (S, V , L, I − 1, A, R + 1) γ I

Disease death I (S, V , L, I , A, R) �→ (S, V , L, I − 1, A, R) μI

Natural death I (S, V , L, I , A, R) �→ (S, V , L, I − 1, A, R) d I

Recovery of A (S, V , L, I , A, R) �→ (S, V , L, I , A − 1, R + 1) γ A

Natural death A (S, V , L, I , A, R) �→ (S, V , L, I , A − 1, R) d A

Natural death R (S, V , L, I , A, R) �→ (S, V , L, I , A, R − 1) dR

where ρ(i, j) is the transition rate associated with transition to j from i and can be
found in Table 3.

The CTMC model characterized by (26) captures dynamics not captured by the
deterministic model (1). In particular, model (26) is well suited to questions related
to emergence and reemergence of a disease, when a small population of infectious
individuals results in a high degree of randomness driving interactions. It also tracks
integer numbers of individuals, making transitions into a state where the disease is
extinct possible, rather than approached as a limit in ODE models.

The difference between these models can be seen in relation to the backward bifur-
cation, when it exists. In the case of model (1), the nullclines which are represented
in Fig. 2 divide the solution space into basins of attraction which are forward invari-
ant. However, in model (26), realizations can move between analogous regions with
positive probability.

Consider the deterministic setting of model (1) and suppose that the model is at
endemic equilibrium in the presence of a backward bifurcation and thatRv is slightly
greater than one. As a vaccination strategy is deployed, it reduces the reproduction
number. However, the population will asymptotically return to endemic equilibria
along the nullcline of Fig. 2 until Rv decreases below Rcrit, which is less than one.

In the remainder of this section, we explore two important natural questions related
to the backward bifurcation and model (26). Does model (26) detect the backward

123



61 Page 16 of 31 J. Arino, E. Milliken

bifurcation shown above for (1)? In other words, do numerical simulations of the
probability of a minor epidemic in (26) change quantitatively and qualitatively in the
parameter region for which the backward bifurcation exists for (1)? We also investi-
gate whether the backward bifurcation can be detected in a branching process model
commonly used to approximate the probability of a minor epidemic.

3.1 Multitype Branching Process approximation

As noted in the Introduction, it is common to formulate a branching process to approx-
imate the probability of extinction in a Markov chain model. One of our primary
objectives is to investigate whether CTMC models and the branching processes com-
monly used to approximate CTMCs detect a change in the dynamics associated to the
presence of a backward bifurcation in the mean field system (1). For epidemic models
with a single infectious individual type, a Bienaymé-Galton-Watson branching pro-
cess (BGWbp) is used, and a multitype branching process (MTbp) is used for multiple
infectious individual types.

Branching process approximation is a linearization technique. In the context of epi-
demic modeling, the branching process used to approximate a CTMC model captures
birth and death probabilities of each infectious type at the disease-free equilibrium. As
a result, branching process approximations are not appropriate to approximate behav-
ior far away from the disease-free equilibrium and do not capture behavior driven by
non-linear dynamics Milliken (2017).

By assuming the number of susceptible and vaccinated individuals are fixed at
disease-free levels, we can construct the MTbp Zn = (Ln, In, An) with the offspring
probability generating function (p.g.f.)

F(u) = ( fL(u), f I (u), f A(u)), (27)

where fi is the offspring p.g.f. for i = L, I , A, respectively. Then fi has the form

fi =
∞∑
n=0

p(rL , rI , rA)urLL urII u
rA
A , (28)

where p(rL , rI , rA) is the probability that an individual of type i gives birth to r j
individuals of type j , for j = L, I , A. Specifically,

fL(uL , uI , uA) = (1 − π)εuI + πεuA + d

ε + d
, (29a)

f I (ul , uI , uA) = β(S0 + (1 − σ)V0)uLuI + γ + μ + d

β(S0 + (1 − σ)V0) + γ + μ + d
, (29b)

and

f A(ul , uI , uA) = βη(S0 + (1 − σ)V0)uLuA + γ + d

β(S0 + (1 − σ)V0) + γ + d
. (29c)
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The probability of a minor epidemic relative to the CTMC Xt with infinitesimal
transition probabilities (26) can be approximated by the extinction probability of the
multitype branching process with generating function (27). Suppose that kL , kI , kA
individuals of types L , I , A, respectively, are introduced at the disease free quasi-
stationary distribution. Suppose also that the multitype branching process satisfies the
conditions of Harris (1963, Theorem 7.1). Then the probability of a minor epidemic
is

P0 = qkLL qkII qkAA , (30)

where 0 ≤ q = (qL , qI , qL) ≤ 1 is the fixed point of

F(q) = q, (31)

where ≤ is the standard partial order in R3.
The threshold theorem of Allen and van den Driessche (2013) associates the crit-

icality of the branching process to the reproduction number. Let q be as above. Then
the following theorem is a corollary to Harris (1963, Theorem 7.1) and the Threshold
Theorem of Allen and van den Driessche (2013).

Theorem 3 The probability of extinction in the multitype branching process with gen-
erating function (27) is given by (30). IfR� ≤ 1, then q = 1. IfRv > 1, then q is the
unique vector 0 ≤ q < 1 such that

F(q) = q.

Proof First consider

DF(x) =

⎡
⎢⎢⎢⎢⎢⎣

0 (1−π)ε
ε+d

πε
ε+d

β(S0+(1−σ)V0)x2
β(S0+(1−σ)V0)+γ+μ+d

β(S0+(1−σ)V0)x1
β(S0+(1−σ)V0)+γ+μ+d 0

βη(S0+(1−σ)V0)x3
βη(S0+(1−σ)V0)+γ+d 0 βη(S0+(1−σ)V0)x1

βη(S0+(1−σ)V0)+γ+d

⎤
⎥⎥⎥⎥⎥⎦

.

It follows that, if x, y ∈ [0, 1]3 with x ≤ y, then

DF(x) ≤ DF(y).

This together with the fact F(0) > 0, implies that the multitype branching process
is not singular. Furthermore, the matrix of first moments M = DF(1) is primitive,
sinceM2 is positive Berman and Plemmons (1979). Therefore, the branching process
is positive regular. The result follows from application of the Threshold Theorem of
Allen and van den Driessche (2013) together with Harris (1963, Theorem 7.1). ��

The previous result illustrates an important implication of the Threshold Theorem
of Allen and van den Driessche (2013) relative to branching process approximation of
major epidemics in the presence of a backward bifurcation in the mean field system
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Table 4 Numerical results in the absence of a backward bifurcation. e = 0.15, β varies with Rv and the
remaining parameter values are presented inTable 7. The branching process approximation of the probability
of a minor epidemic appears in the column denoted BP Approx and the approximation of that probability
based on the frequency of outcomes in one thousand sample paths appears in the column denoted Gillespie

(L0, I0, A0) No. of Pos. Eq. Rv BP Approx Gillespie

(1,0,0) 0 0.99 1.000 1.000

(1,0,0) 1 1.10 0.990 0.990

(0,1,0) 0 0.99 1.000 1.000

(0,1,0) 1 1.10 0.990 0.991

(0,0,1) 0 0.99 1.000 1.000

(0,0,1) 1 1.10 0.990 0.991

(1). The threshold theorem implies that the disease will go extinct almost surely in
the approximating branching process. Since the mean field system is a kind of limit
of the CTMC, the presence of a backward bifurcation there suggests we should be
able to detect a backward bifurcation in the CTMC. However, the branching process
approximation, according to the previous result, provides the same approximation of
almost sure extinction throughout the region of bistability. In the next section, we use
numerical simulations of sample paths of the CTMC to determine, by way of example,
whether the backward bifurcation is detected in the CTMC or not.

3.2 Numerical results

In order to determine whether the CTMC detects the dynamical change suggested
by the backward bifurcation in system (1), we estimate the probability of a minor
epidemic as the frequency of minor epidemics in an ensemble of one thousand sample
paths. The results are compared to the branching process approximation for the same
choice of parameters. These experiments are performed for the parameters found in
Table 7, except for β and e, which are allowed to vary. The parameter e is allowed
to vary to investigate both the super-critical (no backward bifurcation, e = 0.15)
and sub-critical (backward bifurcation, e = 0.05) paradigms. In the absence of the
backward bifurcation, β varies to investigate the two cases Rv < 1 and Rv > 1.
In the presence of the backward bifurcation, β varies to investigate the three cases
Rv < Rcrit, Rcrit < Rv < 1, and Rv > 1. The case Rcrit < Rv < 1 represents the
region of bistability in the presence of a backward bifurcation. There is no difference
between this region and Rv < Rcrit in the absence of the bifurcation. The case
Rv < Rcrit always corresponds to no positive equilibria and the caseRv > 1 always
corresponds to a unique positive equilibrium.

Numerical experiments are initialized at the disease-free quasi-stationary distribu-
tion following the introduction of a single individual of infectious type L , I or A.

Table 4 contains the results of branching process approximation and numerical
simulation in the absence of a backward bifurcation. These results correspond to the
graph on the right in Fig. 2. We see that the branching process approximation captures
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Table 5 Numerical results in the presence of a backward bifurcation. e=0.05, β varies with Rv and the
remaining parameter values are presented in Table 7.The branching process approximation of the probability
of a minor epidemic appears in the column denoted BP Approx and the approximation of that probability
based on the frequency of outcomes in one thousand sample paths appears in the column denoted Gillespie

(L0, I0, A0) No. of Pos. Eq. Rv BP Approx Gillespie

(1,0,0) 0 0.92 1.000 1.000

(1,0,0) 2 0.99 1.000 0.999

(1,0,0) 1 1.10 0.990 0.989

(0,1,0) 0 0.92 1.000 1.000

(0,1,0) 2 0.99 1.000 0.999

(0,1,0) 1 1.10 0.990 0.982

(0,0,1) 0 0.92 1.000 1.000

(0,0,1) 2 0.99 1.000 0.999

(0,0,1) 1 1.10 0.990 0.989

both the character and accurately quantifies the probability of a minor epidemic for
all three sets of initial conditions and for both values of Rv .

Table 5 contains the results of the branching process approximation and numerical
simulation in the presence of the backward bifurcation and correspond the graph on the
left of Fig. 2. They tell a different story. As noted in the discussion following Theorem
3, the branching process provides the same prediction across the entire regionRv ≤ 1,
namely, that a major epidemic occurs with probability zero. Therefore, the branching
process approximation does not detect any dynamical changes due to the presence
of the backward bifurcation. Numerical simulation of the CTMC by the Gillespie
algorithm does detect such changes. This indicates that a major epidemic occurs in
one out of one thousand sample paths in the region where the deterministic model (1)
exhibits bistability. We conclude that the CTMC has different dynamical behavior in
this region that is not captured by the branching process approximation.

Results for the regionRv > 1 provide further insight. In this region, the branching
process approximation captures the qualitative behavior of the CTMC model – that
major epidemics occur with positive probability 1 − P(minor epidemic). However,
numerical simulations suggest that the branching process may not accurately capture
the behavior quantitatively. The evidence for this can be seen in the last two rows
of Table 5 in the rows corresponding to a unique positive equilibrium. Here we see
that the probability approximated by simulation (column Gillespie) is consistently
less than the branching process approximation (column BP Approx). This signal in
the data can be considered weak since the sample mean has standard deviation on the
order of the reciprocal of the square root of the number of simulations. In this case,
only 1,000 simulations were performed. The weakness of the signal may also be due
to the complexity of the system.

A similar analysis is performed for the SVIRS model studied in Appendix B. In
that case, the signal that numerical simulation predicts a lower probability of minor
epidemic that branching process approximation is stronger. For thatmodel, the branch-
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ing process is a single-type BGWbp and the approximation corresponds to Whittle’s
approximation for an SIR model Whittle (1955),

P(minor epidemic) = 1

Rv

. (32)

This relationship betweenRv and the probability of a minor epidemic is more repre-
sentative of a model similar to Fig. 2(a) than to Fig. 2(b). That is, it is more similar to
the case of the absence of a backward bifurcation.

4 Discussion

The phenomenon of bistability due to existence of a backward bifurcation has long
been known to occur in SIR-type models that include vaccination, so it is not too sur-
prising that anODESVLIARSmodel including imperfectwaning vaccination,waning
natural immunity, and disease-induced death, would exhibit the bistable behavior we
proved here. The analysis of the SVLIARS model (1) is similar to that of similar
SIR-type models, but serves as an important reminder that this dynamical behavior
is present in many SIR-type epidemic models when they include demography. While
vaccination always lowers the reproduction number, its imperfection and waning is
also the source of the backward bifurcation in the deterministic model (1), with the
important implication that the reproduction number must be lowered below the critical
value Rcrit < 1 to guarantee the elimination of the disease.

There are many situations in which a stochastic model provides a very valuable
complement or alternative to a deterministic ordinary differential equations system,
including when considering the emergence or re-emergence of a pathogen or variant.
Indeed, they provide trajectories that are more realistic and have a nontrivial variance,
and provide access to quantities such as mean first passage times that cannot be evalu-
ated with ODEs. One class of stochastic models used in this context is continuous time
Markov chains. Indeed, ODEs and CTMCs are very closely related and have many
features in common. For instance, equilibria in a deterministic model are related to
quasi-stationary distributions in CTMC models. However, there are also fundamen-
tal differences. For one, there is no well-defined separatrix or basins of attraction in
CTMC models, so while the mean over a large number of realizations of a CTMC
often tracks close to the solution of the corresponding ODE, in a case like the present
one where the ODE exhibits bistability, the situation is more complicated.

The epidemiological consequences of a backward bifurcation to public health strate-
gies and outcomes have been previously discussed in the literature; see, e.g., Dushoff
et al. (1998); Greenhalgh and Griffiths (2009); Safan et al. (2006). Here we will just
review the implications of this dynamical regime in two situations. In the case of an
already occurring epidemic, the presence of a backward bifurcation means that the
effective reproduction number must be reduced below a threshold Rcrit < 1 rather
than simply below the threshold at one in order to guarantee the elimination of the
disease. Therefore, the presence of the backward bifurcation indicates that additional
effort in the way of control measures are needed to eradicate the disease. In the case of
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emergence or re-emergence of the disease, if the basic reproduction number is below
one but above Rcrit, then the introduction of a few cases may not result in a major
outbreak, but there is a critical number of cases, determined by the parameters, which
would lead to a major outbreak. This unexpected behavior is even more likely due to
the destabilizing effects of randomness.

For example, according to the deterministicmodel, the introductionof a few infected
individuals generally results in a return to the disease-free equilibrium. However, our
numerical experiments show that, in the case of the CTMC model, there is a positive
probability of a major outbreak, consistent with approaching the quasi-stationary dis-
tribution associated to the stable positive equilibrium. This is true despite the fact that
the reproduction number is less than unity. This phenomenon occurs in the presence
of the backward bifurcation. Simulation of the CTMC in the absence of the backward
bifurcation shows the disease almost surely goes extinct following the introduction of
a small number of cases when the reproduction number is less that one. The behavior
of the CTMC model depends on whether or not there is a backward bifurcation in the
related ODE model, particularly in the region Rcrit < Rv < 1. We say the CTMC
model detects the bifurcation.

However, as models become more complex, analysis and simulation of CTMC
models becomes more difficult, often requiring the use of approximation methods.
One such method, relatively simple and easy to implement, is referred to as branch-
ing process approximation. Herein lain the third broad question in this work: given a
deterministic system exhibiting a bistable situation, would a CTMC and its branch-
ing process approximation detect the feature in the same way. The answer to this is
negative: while the CTMC detects the backward bifurcation, the relevant branching
process approximation does not. In both Sect. 3 and Appendix B, we have shown
that, as proven by the combination of the Threshold Theorem of Allen and van den
Driessche (2013) and the Criticality Theorem for branching processes Harris (1963,
Theorem 7.1), the branching process indicates almost sure extinction of the disease
when the reproduction number is below unity, regardless of the dynamical paradigm.
In addition to the fact that the branching process approximation fails to detect the
backward bifurcation when the reproduction number is less than one, it is also quali-
tatively inaccurate in the presence of the backward bifurcation when the reproduction
number is greater than one. This is true for both the SVLIARS and the SVIRSmodels,
but is more evident in the SVIRS example. This approximation error most likely stems
from the fact that the branching process assumes a paradigm in which the probability
of a minor epidemic is related to Whittle’s approximation (32). Near Rv = 1 in this
paradigm, the probability of a new infection (birth) and the probability of a recovery
(death) are nearly equal. However, in the presence of a backward bifurcation (see
Fig. 2(a)), the probability of a new infection is, in reality, much higher than the proba-
bility of a recovery. This results in greater directed motion away from the disease-free
boundary and a higher probability of a major outbreak (lower probability of a minor
outbreak). Thus, the major conclusion about bistability exhibited by both the ODE
and the CTMC is obfuscated when the branching process approximation is used.
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A Parameters for numerical simulations

Table 7 contains the parameter values used in Fig. 2 and for the numerical experiments
in Sect. 3.2. While the values have been chosen to be reasonable for an infectious
disease, they are not intended to represent any particular data set or to be accurate for
the case of COVID-19. Instead, these values were chosen to illustrate the existence
of a backward bifurcation. Note that η = 1 is a simplifying assumption implying that
symptomatic and asymptomatic individuals have the same rate of disease transmission.
Note also that p = 0 reflects the assumption that all newborns are totally susceptible
to the disease. While there is preliminary evidence that newborns may inherit a degree
of vaccine induced immunity Paul and Chad (2021), more research needs to be done.
Our assumption that newborns are totally susceptible does not change the bifurcation
results qualitatively.

B An SVIRSmodel

In this section, we study a simplified epidemic model applicable to the COVID-19
pandemic. We propose deterministic and stochastic models of an SIRS-type model
with vaccination. The deterministic SVIRS model is a small variation on the model
of Arino et al. (2003) obtained by including disease induced mortality and using mass
action instead of proportional incidence. Note that we interpret the R compartment
here as containing individuals who are immune (potentially for a limited time) to the

Table 6 Parameters for
numerical simulations in
Sect. 3.2

Parameter Value

N 1 × 105

d 3.65 × 10−5

B 0.365

η 1

π 0.4

ε 0.14

γ 0.071

ωr 0.032

μ 1.0e − 4

p 0

σ 0.9

ωv 5.5 × 10−4
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Table 7 Parameters for
numerical simulations in
Appendix 3.2

Parameter Value

N 1 × 104

d 3.65 × 10−5

B 3.65

γ 0.048

ωr 0.032

μ 1.0e − 4

p 0

σ 0.9

ωv 5.5 × 10−4

Table 8 Description of model variables in SVIRS model

Variable Description

S Number of susceptible individuals

V Number of individuals with vaccine induced partial immunity

I Number of symptomatic infected individuals

R Number of individuals with disease induced immunity

Fig. 3 Flow diagram of the SVIRS model (33). Demography flows as well as disease-induced death are
shown using dashed lines

disease because of disease-acquired immunity. See Table 8 for a complete list of state
variables used in the models. The flow diagram of the system takes the form shown
Fig. 3.
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B.1 Deterministic SVIRSmodel

The deterministic SVIRSmodel with imperfect andwaning vaccine induced immunity
as well as waning disease-induced immunity takes the form

Ṡ = (1 − p)B + ωvV + ωr R − βSI − (e + d)S, (33a)

V̇ = pB + eS − (1 − σ)βV I − (ωv + d)V , (33b)

İ = βSI + (1 − σ)βV I − (γ + μ + d)I , (33c)

Ṙ = γ I − (ωr + d)R. (33d)

As mentioned, (33) is very similar to the model in Arino et al. (2003) and so analysis
results are similar to those found there.

Proposition 3 System (33) admits a unique disease-free equilibrium E0 = (S0, V0,
0, 0), where

S0 = B

d

ωv + (1 − p)d

e + ωv + d
and V0 = B

d

e + dp

e + ωv + d
(34)

are the equilibrium values of S and V at the unique equilibrium of the positively
invariant subsystem

Ṡ = (1 − p)B + ωvV − (e + d)S,

V̇ = pB + eS − (ωv + d)V .
(35)

Proposition 4 The vaccine reproduction number of system (33) is given by

Rv = β
(1 − σ)e + ωv + d − pσd

(e + ωv + d)(γ + μ + d)

B

d
. (36)

The disease-free equilibrium E0 is locally asymptotically stable for Rv < 1 and
unstable for Rv > 1.

Proof The Jacobian of system (33) evaluated at the disease-free equilibrium E0 is
given by

J |E0 =

⎡
⎢⎢⎣

−(e + d) ωv −βS0 ωr

e −(ωv + d) −(1 − σ)βV0 0
0 0 βS0 + (1 − σ)βV0 − (γ + μ + d) 0
0 0 γ −(ωr + d)

⎤
⎥⎥⎦ .

The submatrix of the Jacobian associated to the infected classes is 1 × 1 and can be
decomposed into F − V where

F = β(S0 + (1 − σ)V0) and V = γ + μ + d.

Following van den Driessche and Watmough (2002) and since F and V are scalar,

Rv = FV−1 = β(S0 + (1 − σ)V0)

γ + μ + d
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and (36) follows when substituting the values S0 and V0 from (34).
Regarding stability, the Jacobian matrix is block upper triangular and admits the

eigenvalues

λ1 = −d(e + ωv + d), λ2 = −d, λ3 = (γ + μ + d)(Rv − 1), λ4 = −(ωr + d).

Therefore, all eigenvalues of the linearized system are negative when Rv < 1, while
λ3 is positive when Rv > 1, implying the result. ��

Proposition 5 Let D = a21 − 4a0a2, where a0, a1, a2 are given by (38). System (33)
admits endemic equilibria according to the following cases:

(i) A unique positive endemic equilibrium ifRv > 1 orRv < 1, a1 > 0 andD = 0;
(ii) Two positive endemic equilibria ifRv < 1, a1 > 0 and D > 0;
(iii) Zero positive equilibria otherwise.

Proof The I component of nonzero equilibria of system (33) are the roots of the
quadratic equation

P(I ) := a0 + a1 I + a2 I
2, (37)

where

a0 = d(γ + μ + d)(e + ωv + d)(Rv − 1),

a1 = β2B(1 − σ) − β((1 − σ)e + ωv + d)
d(γ + μ + d) + ωr (μ + d)

ωr + d

− β(1 − σ)d(γ + μ + d),

a2 = −β2(1 − σ)
d(γ + μ + d) + ωr (μ + d)

ωr + d
< 0.

(38)

First, note that sgn(a0) = sgn(Rv − 1). So, since a2 < 0, from the Rule of Signs of
Descartes, the endemic equilibrium is unique when Rv > 1 and there is no endemic
equilibrium if Rv < 1 and a1 < 0.

Let now D = a21 − 4a0a2 be the discriminant of (37) and

I ∗ = −a1 − √D
2a2

and I∗ = −a1 + √D
2a2

.

Then if I is the value of the I component at an equilibrium then the value of the other
components is given by

S(I ) = γ + μ + d

β
− (1 − σ)V (I )

= γ + μ + d

β
− (1 − σ)

βBp + e(γ + μ + d)

β((1 − σ)β I + (1 − σ)e + ωv + d)

123



61 Page 26 of 31 J. Arino, E. Milliken

V (I ) = βBp + e(γ + μ + d)

β((1 − σ)β I + (1 − σ)e + ωv + d)

R(I ) = γ

ωr + d
I .

Denote E∗ = (S(I ∗), V (I ∗), I ∗, R(I ∗)) and E∗ = (S(I∗), V (I∗), I∗, R(I∗)).
Since S(I ), V (I ) and R(I ) are positive when I is positive, the result follows from
analysis of P(I ) = 0. ��

In order to facilitate the analysis of the backward bifurcation that in the following
theorem, let us define the condition:

dσ(ωr + d)(1 − σ)
(e + dp)(γ + μ + d)

(1 − σ)e + ωv + d − dpσ
> (C1)

((1 − σ)e + ωv + d)(d(γ + μ + d) + ωr (μ + d)).

Theorem 4 If (C1) holds, then system (33) undergoes a backward bifurcation at E0
and Rv = 1.

Proof Consider Rv = Rv(β) and let β∗ be the critical value such that Rv(β
∗) = 1.

Then

β∗ = γ + μ + d

S0 + (1 − σ)V0
= d(e + ωv + d)(γ + μ + d)

B((1 − σ)e + ωv + d − dpσ)
. (39)

At β = β∗, E0 is a hyperbolic equilibrium and center manifold theory can be applied
to analyze the dynamics of system (33) near E0 for β in a neighborhood of β∗. Relabel
(S, V , I , R)T as x = (x1, x2, x3, x4)T so that system (33) can be written x = f(x).
Then the Jacobian of system (33) can be viewed as a function of both the state vector x
and the bifurcation parameter β and written Df(x, β). The matrix Df(E0, β

∗) admits
left and right eigenvectors v and w, respectively. The left eigenvector v = (0, 0, 1, 0)
and the right eigenvector wT = (w1, w2, w3, w4), where w3 is free and

w1 =ωv+d
e w2 + (1 − σ)

β∗x02
e w3; w2 =− e

(
γ+μ+d− ωr γ

ωr+d

)
+d(1−σ)β∗x02

d(e+ωv+d)
w3,

w4 = γ
ωr+dw3,

where x01 = S0 and x02 = V0. In order to apply Theorem 4.1 of Castillo-Chavez and
Song (2004), we must first calculate the parameters

a =
4∑

k,i, j=
vkwiw j

∂2 fk
∂wi∂w j

(E0, β
∗) and b =

4∑
k,i=1

vkwi
∂2 fk

∂wi∂β
(E0, β

∗).

Let w3 = 1. Since the only nonzero component of v is v3 = 1, we have that

b = ∂2 f3
∂w3∂β

(E0, β
∗) = x01 + (1 − σ)x02 > 0.
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Table 9 State transitions and rates for the CTMC SVIRS model

Description Transition i �→ j Rate ρ(i, j)

Birth of S (S, V , I , R) �→ (S + 1, V , I , R) B(1 − p)

Waning of V (S, V , I , R) �→ (S + 1, V − 1, I , R) ωvV

Waning of R (S, V , I , R) �→ (S + 1, V , I , R − 1) ωr R

Vaccination of S (S, V , I , R) �→ (S − 1, V + 1, I , R) eS

I Infects S (S, V , I , R) �→ (S − 1, V , I + 1, R) βSI

Natural death S (S, V , I , R) �→ (S − 1, V , I , R) dS

Birth of V (S, V , I , R) �→ (S, V + 1, I , R) Bp

I Infects V (S, V , I , R) �→ (S, V − 1, I + 1, R) (1 − σ)βV I

Natural death V (S, V , I , R) �→ (S, V − 1, I , R) dV

Recovery of I (S, V , I , R) �→ (S, V , I − 1, R + 1) γ I

Disease death I (S, V , I , R) �→ (S, V , I − 1, R) μI

Natural death I (S, V , I , R) �→ (S, V , I − 1, R) d I

Natural death R (S, V , I , R) �→ (S, V , I , R − 1) dR

Additionally,

a = 2
∂2 f3

∂w1w3
+ 2

∂2 f3
∂w2∂w3

= 2β∗(w1 + (1 − σ)w2).

System (33) undergoes a backward bifurcation when a > 0, which is true whenever
(C1) holds. ��

Remark that if the vaccine has perfect efficacy, i.e., if σ = 1, then a2 = 0, implying
that there is no backward bifurcation possible in this case. Furthermore, in the case
where σ = 1, a positive solution to P(I ) = 0 exists if a0/a1 < 0, which is readily
shown to be equivalent toRv > 1. Also, (36) takes the form

Rv = β
ωv + (1 − p)d

(e + ωv + d)(γ + μ + d)

B

d
.

B.2 Stochastic SVIRS Model

We now consider a stochastic model in the form of a continuous time Markov chain
which is related to the deterministic SVIRS model (33). Informed by that model, we
construct the CTMC, Xt = (S(t), V (t), I (t), R(t)), with the infinitesimal transition
probability to state j from state i ,

pi, j (�t) = P{X(t + �t) = j |X(t) = i} = ρ(i, j)�t + o(�t), (40)

where ρ(i, j) is the transition rate associated with transition to j from i and can be
found in Table 9.
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B.2.1 Bienaymé-Galton-Watson Branching Proccess

Since the SVIRSmodel has a single infectious type, I , the CTMCcan be approximated
using a BGWbp. By assuming that Susceptible and Vaccinated individuals are fixed
at disease-free levels, we can construct the BGWbp In with the offspring probability
generating function

f (u) = β(S0 + (1 − σ)V0)u2 + γ + μ + d

β(S0 + (1 − σ)V0) + γ + μ + d
. (41)

The next result follows from Harris (1963, Theorem 7.1).

Theorem 5 The probability of a minor epidemic in the branching process In with
initially i0 infectious individuals is

P0 = qi0 ,

where

q = min

(
1

Rv

, 1

)
.

Proof The branching process is positive regular and not singular. Therefore 0 ≤ q ≤ 1
is the fixed point satisfying

f (q) = q, (42)

where f is given in (41). Direct calculation shows that the roots of the fixed point
equation (42) are

q = 1

Rv

, and q = 1.

��

B.3 Numerical results

In this section, we compare results of numerical simulation of the CTMC (40) with
the results of approximation by the BGWbp characterized by (41). The purpose of
these simulations is twofold: to determine if the effect of the backward bifurcation is
detected in the CMTC model; and to compare the accuracy of the branching process
approximation in the presence/absence of the backward bifurcation.

For these numerical experiments, the parameter e is used to select for the presence
(e = 0.05) or absence (e = 0.15) of the backwardbifurcation.The results are presented
for various values of Rv which differentiate between the paradigms of no positive
equilibria (Rv < Rcrit), two positive equilibria resulting in bistability (Rcrit < Rv),
and a unique positive equilibrium (Rv > 1). The value of Rv is selected by varying
the parameter β. All other parameters are fixed and their values are given in Table 6.
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Table 10 Numerical results in
the absence of a backward
bifurcation. e = 0.15, β varies
with Rv and the remaining
parameter values are presented
in Table 6

I0 No. of Pos. Eq. Rv BP Approx Gillespie

1 0 0.99 1.000 1.000

1 1 1.01 0.990 0.991

Table 11 Numerical results in
the presence of a backward
bifurcation. e=0.05, β varies
with Rv and the remaining
parameter values are presented
in Table 6

I0 No. of Pos. Eq. Rv BP Approx Gillespie

1 0 0.92 1.000 1.000

1 2 0.99 1.000 0.992

1 1 1.01 0.990 0.977

The results in the absence of the backward bifurcation are presented in Table 10 and
in the presences of the backward bifurcation in Table 11.
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