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Tuberculosis remains a leading cause of infection-related mortality, and efforts to reduce its incidence have been
hindered by an incomplete understanding of local Mycobacterium tuberculosis transmission dynamics. Advances in
pathogen sequencing and spatial analysis have created new opportunities to map M tuberculosis transmission patterns
more precisely. In this scoping review, we searched for studies combining pathogen genetics and location data to analyse
the spatial patterns of M tuberculosis transmission and identified 142 studies published between 1994 and 2024. Secular
changes in genetic methods were observed, with genome sequencing approaches largely replacing lower-resolution
genotyping methods since 2020. The included studies addressed four primary research questions: how are tubercu-
losis cases and M tuberculosis transmission clusters geographically distributed; do spatially concentrated M tuberculosis
clusters exist, and where are these areas located; when spatial concentration occurs, what host, pathogen, or environ-
mental factors contribute to these patterns; and do identifiable relationships exist between the spatial proximity of
tuberculosis cases and the genetic similarity of the M tuberculosis isolates infecting these individuals? Collectively, in this
Review, we examined the available study data, evaluated the analytical requirements for addressing these questions, and
discussed opportunities and challenges for future research. We found that the integration of spatial and genomic data
can inform a detailed understanding of local M tuberculosis transmission patterns, but improved study designs and new
analytical methods to address gaps in sampling completeness and to integrate additional movement data are needed to
fully realise the potential of these tools.
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Introduction
Tuberculosis remains a leading infectious cause of mortal-
ity, and global efforts to reduce its incidence have faced
persistent challenges.1 Tuberculosis is caused by the
respiratory transmission ofMycobacterium tuberculosis, and
approaches that can help to identify local transmission
patterns are required for guiding targeted interventions to
reduce incidence in endemic settings.2 Rapidly increasing
accessibility, resolution, and affordability of pathogen
sequencing and thedevelopment ofmethods for integrating
spatial and genetic data have created new opportunities for
describing local pathogen transmission dynamics.3–7

In 2018, Shaweno and colleagues published a review of
studies on the spatial epidemiology of tuberculosis and
identified 25 studies that combined spatial and genotyping
methods.8 At that time, the authors did not identify studies
that used genomic sequencing techniques (eg, whole-
genome sequencing [WGS]) in combination with spatial
analysis. WGS typically examines over 90% of the
M tuberculosis genome, whereas genotyping methods cap-
ture 1% or less.9,10 With advancements in pathogen genetics
and spatial data analysis, several studies have used these
technologies to investigate M tuberculosis transmission in
communities.11

Given these developments and the diversity of method-
ologies,we present a scoping review of studies that combine
genomic and spatial analyses to identify local patterns of
M tuberculosis transmission. We report the types of genetic
and spatial data included and categorise them based on the
primary research questions addressed. We provide a sum-
mary of statistical methods used to analyse different types
of spatial and genomic data to describe M tuberculosis
www.thelancet.com/microbe Vol ▪ ▪ 2025
transmission and provide a mapping of these methods to
the types of data examined and the research questions
posed. Based on these findings, we evaluate challenges
and opportunities for future studies that integrate WGS
and spatial analysis to advance the understanding of
M tuberculosis transmission.

Methods
Search strategy and selection criteria
Using our search strategy, we identified peer-reviewed
studies in English that used both genetic and spatial data
to describe M tuberculosis transmission patterns. We
searched for papers published before June 3, 2024, in four
databases: PubMed, Web of Science Core Collection,
Embase (Ovid), and Scopus. Our search included three
groups of terms: genomic terms (eg, “genom*”), spatial
terms (eg, “geograph*”), and tuberculosis-related terms
(eg, “tuberculosis”). A detailed search strategy for this
Review, including search terms and relevant information, is
provided in the appendix (p 1) and in the supplement of our
published protocol on the Open Science Framework regis-
tries.12 We used the reference management software
Endnote and Covidence for screening and extraction of
the included studies. The artificial intelligence tools
implemented in Covidence were not used.

Inclusion and exclusion criteria
Studies focusing onquestions related to the transmission of
M tuberculosis between humans and incorporating both
genetic and spatial data were included in the Review.
Genetic data could include those obtained from genotyping
1
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Figure 1: Flowchart of the search strategy and selection criteria
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methods, such as spacer oligonucleotide typing (spoligotyp-
ing), variable-number tandem repeat of mycobacterial inter-
spersed repetitive unit analysis (MIRU-VNTR), IS6110 RFLP
analysis, or genomic sequencing (ie, WGS; detailed in the
appendix p 3). Spatial data could include point or areal
locations. Studies that focused primarily on microbial evo-
lution, including the long-range dispersal of M tuberculosis
associated with human migration, were excluded from our
Review. No authors from included studies were contacted.
We did not include grey literature and we did not assess the
quality of studies in this scoping review.
Following the removal of duplicate records, two reviewers

(YL and IR) independently conducted a preliminary
screening based on titles and abstracts, followed by full-text
screening of studies meeting the inclusion criteria. Dis-
agreements in eligibility assessments were resolved through
discussion. The studies ultimately considered for inclusion
were subsequently reviewed by the senior author (TC).

Data extraction and analysis
Two reviewers (YL and IR) independently extracted infor-
mation from full-text versions of the included studies using
a standardised template (appendix p 2) and entered in a
spreadsheet. The retrieved and charted data included the
study setting, study design and duration, type of
M tuberculosis genetic data, type of spatial data available, and
analytical approaches used to integrate these genetic and
spatial data. Discrepancies in extracted data were resolved
through discussion, with adjudication by the senior
author (TC). Our scoping review has been prepared
according to the PRISMA-ScR guidelines,13 and the
checklist is provided in the appendix (pp 25–27).

Results
Study selection and characteristics
We retrieved 3341 studies from PubMed (n=608), Embase
(n=779), Web of Science (n=846), and Scopus (n=1108).
After the removal of duplicate studies (n=1832), the pre-
liminary screening of titles and abstracts (n=1509) resulted
in 364 articles selected for full-text screening. Based on the
full-text review, 142 studies met the inclusion criteria
(figure 1). A list of all included studies and abstracted data
are provided in the appendix (pp 3–9).

Study setting and design
The 142 studies included in this Review were published
between December, 1994, and May, 2024. Most studies
(n=139) focused on M tuberculosis transmission within a
single country or subnational setting, with the highest
number of studies based in China (n=21), followed by the
USA (n=19), Canada (n=8), and SouthAfrica (n=8;figure 2).
Study designs varied, with 76 studies attempting to

include all culture-positive notified tuberculosis cases
within the study period. 49 studies used a predefined subset
of notified tuberculosis cases in the study region (eg, only
individuals with multidrug-resistant tuberculosis were
included). 12 studies includeda random(orpseudorandom)
sample of notified tuberculosis cases from the study region.
Most studies did not restrict cases based on drug suscepti-
bility, whereas 40 studies were specifically focused
on investigating transmission among individuals with
drug-resistant tuberculosis.
Although most studies included patients with tubercu-

losis detected through passive surveillance (eg, registered
cases at health-care facilities), 34 studies incorporated cases
identified through contact tracing. For example, studies in
rural Uganda used registered individuals with tuberculosis
and their contacts to identify locations of M tuberculosis
transmission14 and areas of spatial overlap among cases.15

Walter and colleagues included individuals identified
through active case findings from prisons in Brazil together
with those identified in community settings to investigate
the spillover of transmission fromcongregate settings to the
surrounding population.16 The duration of collecting
M tuberculosis isolates ranged from 6 months to 19 years.
47 studies included isolates collected for 2 years or less,
58 studies included isolates collected for 3–5 years, and
36 studies included isolates collected for periods exceeding
5 years.
Spatially referenced genomic data
Genotyping and genomic sequencing methods varied
across studies (figure 3A). Genotyping methods, including
www.thelancet.com/microbe Vol ▪ ▪ 2025
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Figure 2: Country-wise distribution of the included studies
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MIRU-VNTR analysis, spoligotyping, and RFLP, use cat-
egorical measures to define groups of genetically similar
isolates that might be related through recent transmission.
Conversely, WGS provides higher resolution by using dis-
crete measures such as single nucleotide polymorphisms
(SNPs) or continuous measures such as estimated trans-
mission probabilities. In this Review, isolates assigned to a
putative transmission cluster by either genotyping or
sequencing approaches are referred to as members of an
M tuberculosis cluster.
In 1994, Yang and colleagues used RFLP to identify three

M tuberculosis clusters in Greenland and mapped their
geographical locations.17 Since then, multiple genotyping
and spatial analytical methods have been applied to inves-
tigate tuberculosis transmission, and the annual number of
publications using genotyping methods was more than
five-fold higher in 2018 than in 2010. However, the use of
genotyping has declined with the increasing accessibility of
genomic sequencing technologies. Two studies published
in 2018 combined WGS with spatial analysis to investigate
tuberculosis transmission,18,19 althoughWGShas beenused
in transmission studies since 2010.20 By 2020, sequencing
had largely replaced lower-resolutiongenotyping techniques
as thepreferred genetic characterisationmethod (figure 3A).

Spatial data types
More studies used areal data (ie, cases assigned to aggre-
gated geographical regions; n=102) than point-referenced
data (ie, cases assigned to unique spatial locations with
coordinates; n=52). 12 studies used both point and aggre-
gated data types and applied spatial methods to each.
Among studies using areal data, the majority (n=64)
assigned spatial locations of cases to small geographical
areas (eg, county or equivalent level), whereas 35 studies
aggregated cases at larger subnational scales (eg, state level).
Three studies aggregated cases at the national level to
examine M tuberculosis transmission across country
borders.21–23

Among studies with point-referenced data, most (n=41)
used a single location per participant (eg, primary
residence), whereas nine studies included multiple loca-
tions per participant (eg, workplace, health-care facility, or
other places of social congregation). For example, one study
examinedpotentialMtuberculosis transmission sites located
near a major railway in an urban setting in Japan,24 and
another study in Benin identified individuals who lived or
worked in the same area and visited the same bar and were
infectedwith a closely relatedMtuberculosisBeijing isolate.25

A study in Lima, Peru, constructed spatial activity spaces
using GPS tracking and identified overlapping activity
spaces among individuals infected with genetically similar
multidrug-resistantM tuberculosis isolates.26

Research questions addressed using genomic and spatial
data
Studies included in this Review addressed four general
types of research questions. The first category, spatial
www.thelancet.com/microbe Vol ▪ ▪ 2025
description (a), addressed how individualswith tuberculosis
and specific M tuberculosis clusters are geographically
distributed across study areas. The second category, hotspot
detection and localisation (b), investigatedwhether locations
of spatial concentration of specific M tuberculosis clusters
exist and, in such cases, where these areas are located.
The third category, hotspot explanation (c), assessed
whether host, pathogen, or environmental factors contrib-
ute to these spatial patterns. The final category, association
between proximity and genetic relatedness (d), explored
whether relationships existed between the spatial prox-
imity of individuals with tuberculosis and the genetic
similarity of the M tuberculosis isolates with which they
were infected.
The resolution of spatial and genetic data determined

which research questions could be addressed, and many
studies attempted to examine more than one of these ques-
tions. From a practical standpoint, all studies meeting the
inclusion criteria addressed at least thefirst question. A table
of all included studies, categorised by research question and
methods used, is provided in the appendix (pp 10–15; the
relevant reference list is in the appendix [pp 16–25]).
Among the studies addressing spatial description

(question a), 89 provided only simple descriptions of the
spatial distribution of M tuberculosis clusters. Of these,
21 studies provided spatial information solely through text
or tables, such as listing genetically typed cases by admin-
istrative region (eg, state or province) of primary residence.
Studies that includedmaps (n=57) primarily used dot maps
to display point data (typically after jittering to maintain
privacy), and pie charts and choropleth maps were used to
visualise areal data.
Beyond simple description, 32 studies included statistical

tests to assess associations between administrative areas
and the locations of genetically clustered isolates. For
example, a study inNew Jersey,USA, found that individuals
with tuberculosis who reside in a particular county were at
higher risk of being in a specific M tuberculosis genotype
cluster.27Other studieshavegroupedall genotypically linked
cases as a single category and compared their spatial dis-
tribution to that of all other cases; for example, a study in
South Africa indicated that individuals living in urban dis-
tricts have a higher probability of being infected with
3
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genetically similarM tuberculosis strains than those living in
rural districts.28

In studies focused on hotspot detection and localisation
(question b), 46 attempted to identify specific areas of spatial
aggregation ofM tuberculosis clusters. Most studies seeking
to identify areas of unexpectedly high spatial aggregation
accounted for variations in local population density. Some
explicitly incorporated population per area in their analyses,
whereas others implicitly controlled for population density
by comparing the spatial distributions of individuals
infected with differentM tuberculosis strains.
Studies used various methods to detect and localise

M tuberculosis clusters depending on the type of spatial data
available. Spatial scan analysis was themost frequently used
approach (n=21) for investigating the spatial aggregation of
cases. A spatial scan statistic tests for evidence of clustering
within circular or elliptical windows.29 The scan statistic
has been used for detecting spatial concentration of
M tuberculosis clusters since 200730 and has been widely
applied to tuberculosis8 and other diseases.31

Spatial autocorrelation methods were applied in studies
using aggregated data and facilitated the investigation
of clustering patterns at both global and local levels.
TwostudiesusedGlobalMoran’s I to test for evidenceof any
significant spatial aggregation of M tuberculosis clusters
across entire study areas.32 Local methods such as the
Getis-Ord Gi* statistic were used to identify hotspots and
coldspots based on local estimates of spatial autocorrel-
ation.33,34 Four studies in our scoping review used these
methods to identify hotspots of M tuberculosis clusters,
providing evidence of localised transmission.
13 studies used density-basedmethods to identify areas of

spatial aggregation, with kernel density estimation themost
common method, being used in 11 of these studies. These
methods help to estimate the intensity of cases within grid
cells covering the study area.
Distance-based methods were used in four studies,

applying nearest neighbour analysis31 to evaluate whether
spatial clustering occurred in relation to each case and its kth

nearest neighbour. Three studies used Ripley’sK function35

to estimate the relationship between genetic clustering and
spatial distance, whereas two studies used distance-based
mapping through a case-control approach, in which cases
(isolates within a specific transmission network) were
compared with controls (isolates outside the transmission
network).36 One study used a spatial Bayesian model to
www.thelancet.com/microbe Vol ▪ ▪ 2025
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Question a (spatial description) Question b (hotspot detection and localisation) Question c (hotspot
explanation)

Question d (association between proximity and
genetic relatedness)

Point
data

Dot map (eg, using colour or shape to represent
different Mycobacterium tuberculosis clusters)
Illustration using text in a table
Hypothesis testing (eg, ANOVA)

Density-based methods (eg, kernel density
estimation)
Neighbour-based methods (eg, nearest neighbour
index)
Distance-based methods between cases and
controls (eg, distance-based mapping)
Spatial (Bayesian) modelling

Hypothesis test
(eg, ANOVA)
Regression modelling
Geostatistical spatial
modelling

Correlation
Regression modelling
Spatial (Bayesian) modelling

Areal
data

Display aggregated information at the centroid of
the locality (eg, pie chart and graduated symbol)
Choropleth map
Illustration using text in a table
Hypothesis test (eg, χ2 test)

Global and local spatial autocorrelation (eg, Global
Moran’s I and Getis-Ord Gi*)
Scan statistics
Spatial (Bayesian) modelling

Hypothesis test (eg, χ2

test)
Regression modelling
Disease mapping

Correlation
Regression modelling
Spatial (Bayesian) modelling

Table 1:Methods used to address the four types of questions with point or areal data

Review
identify local foci of tuberculosis transmission.37 Although
this study used areal data, Bayesian models can be adapted
for use with point data.
Hotspot explanation (question c) was addressed by

11 studies that examined factors associated with the spatial
concentration of M tuberculosis clusters using hypothesis
testing and regression modelling. We illustrate this
approach with a simple regression model. The outcome
specific to the individual or spatial unit i (ie, Yi) can take
several forms; it might be a binary indicator (eg, being a
member of a genomic cluster or not), a count (eg, the
number of cases belonging to a particular genomic cluster
within a spatial unit), or other possible outcomes depending
on the research question. The vector of corresponding
covariates (ie, xi) can include a mix of host characteristics
(eg, age), environmental factors (eg, population density), or
M tuberculosis isolate-related information (eg, lineage). An
example of a spatial regression model for a continuous
outcome is expressed as.

Yi = β0+∑
p

j=1
βjxij + θi + ei

in which the βj (j>0) parameters describe the association
between the predictors and outcome, and θi is a random
effect that can be included (but is not required) to account
for spatial correlation in the outcome data. The distribu-
tional assumptions of spatial random effects depend on
the type of spatial data and other sources of aggregation
(eg, individuals within a household). Geostatistical meth-
ods based on Gaussian processes are appropriate for point-
referenced data, whereas conditional autoregressive models
better describe spatial proximity and correlation in areal
data.37–39 The term ei is a typical error term that accounts for
data distribution but is often omitted in non-continuous
outcomes (eg, binary or count data).
For example, a study in Botswana used scan statistics to

identify areas of localised M tuberculosis transmission.
A subsequent multivariable logistic regression analysis
helped to identify host-specific factors (ie, age <24 years,
smoking, and unemployment) and environmental factors
(ie, residence in an area with high tuberculosis incidence)
www.thelancet.com/microbe Vol ▪ ▪ 2025
that were associated with increased risk of being in a local
transmission hotspot.40

A study in Moldova indicated that local population density
was positively associated with hotspot locations of
M tuberculosis clusters, whereas factors such as local tuber-
culosis incidence and local measures of poverty were not
associated with transmission hotspots.37 Notably, spatial
regressionmodelling also allows the integrationof additional
covariates into spatial aggregation analyses, enabling
researchers to address both cluster detection and explanatory
factors within a single analytical framework.
The association betweenproximity and genetic relatedness

(question d) was examined in 15 studies that explored the
correlation between genetic distance betweenM tuberculosis
isolates (ie, a measure of pathogen relatedness) and the
spatial proximity of tuberculosis cases. One study in
Shanghai, China, reported that individuals with tuberculosis
livingwithin 1 kmof each other had the highest risk of being
infected with closely relatedM tuberculosis strains, indicating
thathouseholdproximitywas associatedwith transmission.41

Pairwise analyses have been used to investigate the correl-
ationbetweengeographical distance andgenetic relatedness.
For example, a study in Botswana indicated generally low
positive correlations between pairwise proximity and SNP
distances, although the strength of the correlation varied by
genotype cluster.42 Methods that account for multiple
sources of correlation while testing for the association
between covariates and genetic similarity between
M tuberculosis isolate pairs, such as GenePair,43 have also
been introduced. The methods that have been widely used
for addressing these four types of research questions with
point and areal data are listed in table 1.

Impact of the pathogen-typing approach on research
questions and analytical methods
Different research questions have been addressed, and
distinct analytical methods have been used, depending on
whether genotyping (n=111) or sequencing (n=31)
approaches were used.
In studies using pathogen genotyping methods such

as RFLP, MIRU-VNTR, or spoligotyping, approximately
70% (n=77 of 111) focused on describing the spatial
5
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Study duration Study area Definition of genomic clusters Spatial approaches Types of questions
addressed

Focus on DR-TB

Yang et al (2018)19 2009–15 Shanghai, China SNP (10) and transmission probability KDE a, b, d ⋅⋅
Jiang et al (2020)44 2013–17 Shenzhen, China SNP (12) KDE a, b U

Lin et al (2020)45 2018 Guangxi, China SNP (12) NA a, d ⋅⋅
Bui et al (2021)26 2016–17 Lima, Peru SNP (5) KDE a, b, c, d U

Huang et al (2022)46 2009–12 Lima, Peru SNP (1, 5, 10) Other a, b, d ⋅⋅
Yin et al (2022)47 2018–20 Beijing, China SNP (12) and transmission probability KDE a, b U

Yang et al (2022)48 2018–19 Moldova SNP (5), patristic distance, and
transmission probability

NA a, d ⋅⋅

Zhao et al (2022)49 2018–20 Chongqing, China SNP (12) NA a, d U

Baker et al (2023)42 2012–16 Gaborone, Botswana SNP (5) KDE, K function a, b, d ⋅⋅
Li et al (2023)41 2011–20 Shanghai, China SNP (12) and transmission probability KDE a, b, d ⋅⋅
Miyahara et al (2023)50 2017–20 Chiang Rai province, Thailand SNP (12) Nearest neighbour index a, b ⋅⋅
Che et al (2024)51 2020–23 Ningbo, China SNP (12) KDE a, b, d U

Lan et al (2024)37 2018–19 Moldova SNP (5), patristic distance, and
transmission probability

Spatial Bayesian modelling a, b, c ⋅⋅

Liu et al (2024)52 2015–21 Zhejiang, China SNP (12) KDE a, b, d ⋅⋅
Utpatel et al (2024)53 2017–19 Callao, Peru SNP (5) KDE a, b U

Yang et al (2024)54 2016–21 Urumqi City, China SNP (12) Scan statistics a, b U

Yuen et al (2024)55 2011–12 and 2020–21 Peru SNP (5, 10) NA a, d ⋅⋅

A checkmark in the DR-TB column indicates a study that focuses on at least one drug-resistant phenotype, including multidrug-resistant and extensively drug-resistant phenotypes. DR-TB=drug-resistant tuberculosis.
KDE=kernel density estimation. NA=not applicable. SNP=single nucleotide polymorphism. Question a=spatial description. Question b=hotspot detection and localisation. Question c=hotspot explanation.
Question d=association between proximity and genetic relatedness.

Table 2: Studies combining whole-genome sequencing and spatial data to address research questions beyond spatial distribution
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distribution of specific M tuberculosis isolates (question a).
33 of these studies extended the analysis to investigate the
locations of spatial aggregation of M tuberculosis clusters
(question type b) and nine further investigated factors
associated with such hotspots (question type c). Given that
genotyping typically classifies M tuberculosis isolates into
nominal categories, only two genotyping studies attempted
to estimate the relationship between genetic distance and
spatial proximity (question d).
In contrast, studies using WGS adopted more advanced

approaches to integrate genomic and spatial data. 12 WGS
studies focused on describing the spatial distributions of
M tuberculosis isolates (question a), whereas 19 studies used
more sophisticatedmethods to analyse genomic and spatial
data (table 2). Of these, 13 identified areas of spatial aggre-
gation of genomically classified M tuberculosis isolates
(question b) and two performed additional analyses to
identify factors associated with these hotspots (question c).
Furthermore, 13 WGS studies quantified the association
between genomic and spatial distances of isolate pairs
(question d).
WGS studies offer unique opportunities for defining

genomic clustering and identifying potential transmission
linkages. Two studies relied solely on common (sub)lineage
assignments to define genomic clusters, whereas 29 studies
used thresholds of SNP distance (or related estimates) to
define transmission links. The most commonly applied
thresholdwas 12SNPs (n=13), followedby thresholds offive
SNPs (n=10), ten SNPs (n=6), 11 SNPs (n=1), and 20 SNPs
(n=1). Two studies used multiple SNP thresholds in their
main analysis, whereas 27 studies used a single threshold
for the main analysis and conducted sensitivity analyses
with alternate thresholds. Additionally, some WGS studies
used estimated patristic distance (n=3) or estimated trans-
mission probability (n=6) as alternative continuous meas-
ures of genomic similarity. The studies integrating WGS
with spatial analysis are summarised in table 2.

Discussion
In our scoping review, 142 studies on M tuberculosis com-
bining genomic and spatial data met the inclusion criteria.
Most studies were conducted in North America and Asia,
with fewer studies from South America and Africa.
This disparity likely reflects uneven access to genomic
sequencing resources and suggests that knowledge of
transmission patterns in some of the most affected coun-
tries remains scarce. Most studies included tuberculosis
cases detected through routine passive surveillance over
study durations of 5 years or less. Approximately one-
quarter of studies focused specifically on drug-resistant
tuberculosis and several relied on data collected during
surveys conducted for other purposes.Over the past 5 years,
genotyping methods such as RFLP, MIRU-VNTR, and
spoligotyping have largely been replaced by WGS for char-
acterisingpathogen relatedness and inferring transmission,
with important implications for the typesof researchquestions
that can be addressed and the analytical methods used.
Studies included in this Review contained descriptions of

the spatial locations associated with specific M tuberculosis
clusters, oftenpresentingmapsusingdotplots or choropleth
www.thelancet.com/microbe Vol ▪ ▪ 2025

www.thelancet.com/microbe


Review
maps, depending on the available resolution of the spatial data
and non-graphical tabular descriptions (question a). Many
studies incorporating WGS methods have also displayed
additional data beyond the categorical M tuberculosis cluster
types on thesemaps, such as integrating spatial locationswith
phylogenetic trees.42,56

Beyond the descriptive mapping of specificM tuberculosis
isolates,most studies included additional analyses to test for
evidence of spatial aggregation (question b). The selection of
the most appropriate methods to assess spatial clustering
depends on the resolution of the spatial data (areal vs point).
Availablemethods to test for these types of hotspots include
approaches for the detection of spatial autocorrelation
(eg, Getis-Ord Gi*), methods for the detection of spatial
aggregation (eg, scan analysis), density-based approaches
(eg, kernel density estimation), and distance-basedmethods
(eg, distance-based mapping). The application of spatial
modelling approaches (eg, hierarchicalBayesianmodelling)
has been increasingly used to detect spatial aggregation, and
these methods allow for the inclusion of additional cova-
riates that might be associated with spatial aggregation
(question c). Properly accounting for local population
density differences when identifying areas with a higher-
than-expected number of tuberculosis cases within specific
M tuberculosis clusters remains an important consideration
for researchers.
Many studies that identified tuberculosis hotspots also

sought to identify host, pathogen, and environmental fac-
tors associated with spatial aggregation (question c). The
existing literature includes studies that use both spatial and
non-spatial models; we strongly encourage researchers to
consider using models that account for spatial autocorrel-
ation to ensure valid statistical inferencewhenworkingwith
spatially structured data.
WGS has provided additional opportunities to investigate

the association between genomic relatedness and spatial
distance among M tuberculosis isolates (question d). These
studies have typically used SNP differences as a measure of
genetic relatedness (table 2), but tree-based measures
(eg, patristic distances) or estimates obtained from formal
transmission inference (eg, transmission probabilities) are
increasingly used;57 these approaches can account for other
measured variables or features of the data such as censoring
and incomplete sampling. Pairwise regression analyses, in
which genetic distance and spatial distance between each
pair of sequenced M tuberculosis isolates are evaluated, are
commonly used to investigate these relationships. How-
ever, these approaches require specific analyticalmethods to
account for correlations introduced by pairwise compar-
isons, as each isolate appears inmultiple pairs.58 GenePair43

provides a Bayesian approach for analysing these data while
incorporating other measured covariates.
Several limitations should be considered when

interpreting the findings of this Review. First, only articles
published inEnglishwere included,whichmighthave led to
theomissionof relevant studiespublished inother languages.
Second, we did not evaluate the quality of the included
www.thelancet.com/microbe Vol ▪ ▪ 2025
studies. Third, we did not provide a detailed technical review
of the genetic and spatial epidemiological methods used; we
refer interested readers to relevant reviews of these topics.8,59

As genomic and spatial analytical methods continue to
evolve, we anticipate numerous opportunities and chal-
lenges in the future. The measurement of spatial locations
can be challenging in many settings, and new technologies
and approaches for assigning accurate locations will be
valuable. The topic of measurement errors in spatial ana-
lyses has received attention elsewhere.60 This issue is par-
ticularly relevant for many locations with high tuberculosis
burdenwhere the automated conversion of street addresses
to spatial coordinates (ie, geocoding) remains unfeasible.
Most studiesuse residential addresses as the primary spatial
location, whereas some also collect data on additional loca-
tions, including workplaces, schools, places of worship,
transportation hubs, prisons, and health-care facilities.
Identifying themost appropriate approach for incorporating
multiple locations remains an area of active investigation.
Given the increasing recognition of the importance of
transmission occurring outside households,61 and in the
context of other congregate settings,62 new methods for
identifying shared locations and transmission-prone envi-
ronments will be valuable. Furthermore, most included
studies used Euclidean or other geographical distances,
which might not adequately capture transmission-relevant
connectivity between locations.63 The use of mobility data,
which are becoming increasingly common in infectious
disease epidemiology, as shown in studies onCOVID-1964,65

and malaria,66 presents promising avenues for addressing
this limitation.67,68

A key challenge that limits transmission inference relates
to incomplete sampling of transmission networks. This
limitation occurs for several reasons, only some of which
are modifiable by investigators. First, epidemics of
M tuberculosis progress more slowly than those of most
other pathogens, resulting in the left-censoring and right-
censoring in epidemiological studies. Conducting studies
over longer timeframes might help to partly address this
issue, but we anticipate that such censoring would be per-
sistent. Second, a substantial proportion (approximately
40% globally) of notified tuberculosis cases are diagnosed
without microbiological confirmation; thus, isolates of
M tuberculosis infections are often unavailable for sequen-
cing. The optimal approach for handling untypable cases in
transmission analyses remains unclear and likely depends
on the specific study setting and research question. Some
efforts have been made to predict theM tuberculosis cluster
to which untyped isolates would have been assigned in a
low-incidence setting,69 but whether these predictions are
sufficiently accurate and whether these methods generalise
to high-incidence settings are unclear. Third, the prevalence
of asymptomatic tuberculosis is increasingly recognised;
surveys assessing tuberculosis prevalence have shown that
approximately 50% of patients with prevalent culture-
positive tuberculosis do not report symptoms typically
associated with this disease.70 Our understanding of the
7
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natural history of asymptomatic disease (ie, what subset of
asymptomatic individuals would have developed symp-
toms, sought care, and at what time) and its contribution to
transmission is incomplete; nevertheless, the presence of
such asymptomatic cases complicates the interpretation of
the data that are typically available.
Another common challenge is that many M tuberculosis

clusters contain a small number of cases, making statistical
inference difficult. Restricting analyses to larger genetic
clusters (eg, those with at least ten cases) canmitigate some
of these issues; however, this approach risks overlooking
important insights into the early growth and spread of
clusters and might exclude a substantial proportion of the
available data. Assuming shared characteristics across
clusters, hierarchical modelling that incorporates all clus-
ters within a unified framework could facilitate the pooling
of information and improve the stability of inference across
clusters of varying sizes. Meta-analyses and meta-
regressions might also be valuable for integrating infor-
mation from cluster-specific analyses while accounting for
size differences by incorporating uncertaintymeasures into
the analysis.
We anticipate that novel methods for integrating, visual-

ising, and analysing the rich spatial and geographical
information that are now available will be introduced in
future studies. Machine learning and artificial intelligence-
based approaches for combining spatial and genomic data
are under development; however, no peer-reviewed studies
using these methods were identified in our search.
The development of accessible web-based tools that com-
bine spatial and genomic data to enable more rapid
assessments of local transmission locations would serve as a
valuable resource for policy makers, supporting more effec-
tive and efficient resource allocation. In all cases, preserving
patient anonymity and protecting affected communities will
be essential to ensure that the potential benefits of these
tools are realised without compromising care or increasing
stigma.
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